题目链接:http://codeforces.com/contest/820/problem/D
题意:求.有一种操作
- k = 0: shift p1, p2, ... pn,
- k = 1: shift pn, p1, ... pn - 1,
- ...,
- k = n - 1: shift p2, p3, ... pn, p1.
这样的操作,问sum值最小是多少需要操作几次
题解:这题其实只要模拟一下操作就行了复杂度为O(n)具体看一下代码。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
const int M = 1e6 + 10;
typedef long long ll;
int a[M] , pre[M];//pre[i]可以理解为再向前移动i位后a[i]-i<=0。
int main() {
int n;
scanf("%d" , &n);
for(int i = 1 ; i <= n ; i++) scanf("%d" , &a[i]);
ll sum = 0 , Min;
int ans = 0;
memset(pre , 0 , sizeof(pre));
for(int i = 1 ; i <= n ; i++) {
sum += abs(a[i] - i);
if(a[i] - i <= 0) pre[0]++;
else pre[a[i] - i]++;
}
Min = sum;
int cnt = pre[0];//cnt表示上个状态有多少a[i]-i<=0,sum就可以加上cnt,因为前移后结果肯定是变大的。
for(int i = 1 ; i < n ; i++) {
int pos = n - i + 1;
if(a[pos] - n <= 0) cnt--;//由于pos位置是要移动到第一位的所以要判断一下,因为后面pos位置和首位会另外处理
if(a[pos] - pos <= 0) pre[0]--;//更新状态
else pre[a[pos] - pos]--;
pre[min(a[pos] + i - 1 , M - 10)]++;//由于i表示已经总体向后移动了i位而且第i个数已经移到首位。所以pos位移动到第一位还要再加上i
sum += cnt;
sum -= (n - cnt - 1);//那些原来a[i]-i>0前移之后贡献肯定减少。所以这里减去,再处理掉首位。首尾额外处理
sum -= abs(a[pos] - n);
sum += abs(a[pos] - 1);
cnt += pre[i];
if(sum < Min) {
ans = i;
Min = sum;
}
}
printf("%lld %d\n" , Min , ans);
return 0;
}