【问题描述】
稀疏矩阵的存储不宜用二维数组存储每个元素,那样的话会浪费很多的存储空间。所以可以使用一个一维数组存储其中的非零元素。这个一维数组的元素类型是一个三元组,由非零元素在该稀疏矩阵中的位置(行号和列号对)以及该元组的值构成。而矩阵转置就是将矩阵行和列上的元素对换。 请你实现一个快速的对稀疏矩阵进行转置的算法。
【输入形式】
输入的第一行是两个整数r和c(r<200, c<200, r*c <= 12500),分别表示一个包含很多0的稀疏矩阵的行数和列数。接下来有r行,每行有c个整数,用空格隔开,表示这个稀疏矩阵的各个元素。【输出形式】 输出为读入的稀疏矩阵的转置矩阵。输出共有c行,每行有r个整数,每个整数后输出一个空格。请注意行尾输出换行。
【样例输入】6 7
0 12 9 0 0 0 0
0 0 0 0 0 0 0
-3 0 0 0 0 14 0
0 0 24 0 0 0 0
0 18 0 0 0 0 0
15 0 0 -7 0 0 0【样例输出】0 0 -3 0 0 15
12 0 0 0 18 0
9 0 0 24 0 0
0 0 0 0 0 -7
0 0 0 0 0 0
0 0 14 0 0 0
0 0 0 0 0 0
【提示】第二组测试数据行列较大。
#include<iostream>
using namespace std;
typedef struct{
int row,col;
int e;
}Triple;
typedef struct{
Triple data[12501];//开始没看到r*c<=12500
int m,n,len;
}TSMatrix;
void Init(TSMatrix *a)//初始化
{
a->len=a->m=a->n=0;
}
void print(TSMatrix *a)//用三元表打印矩阵
{
int r=a->m,c=a->n,len=0;
int array[r][c];
for(int i=0;i<a->m;i++)//矩阵初始化为0
{
for(int j=0;j<a->n;j++)
{
array[i][j]=0;
}
}
for(int i=0;i<a->m;i++)//根据三元表信息修改矩阵
{
for(int j=0;j<a->n;j++)
{
if(i==a->data[len].row&&j==a->data[len].col)
{
array[i][j]=a->data[len].e;
len++;
}
}
}
for(int i=0;i<a->m;i++)
{
for(int j=0;j<a->n;j++)
{
cout<<array[i][j]<<" ";
}
if(i<a->m-1)
cout<<endl;
}
}
void Creat(TSMatrix *t,int r,int c)//创建三元表
{
int arr[r][c];
for(int i=0;i<r;i++)
{
for(int j=0;j<c;j++)
{
cin>>arr[i][j];
}
}
t->m=r;
t->n=c;
t->len=0;
for(int i=0;i<r;i++)
{
for(int j=0;j<c;j++)
{
if(arr[i][j]!=0)
{
t->data[t->len].row=i;
t->data[t->len].col=j;
t->data[t->len].e=arr[i][j];
t->len++;
}
}
}
}
void TSM(TSMatrix *a,TSMatrix *b)//两个三元表转置
{
int i,j,k;
b->m=a->n,b->n=a->m,b->len=a->len;
if(b->len>0)
{
j=0;
for(k=0;k<a->n;k++)
{
for(i=0;i<a->len;i++)
{
if(a->data[i].col==k)
{
b->data[j].row=a->data[i].col;
b->data[j].col=a->data[i].row;
b->data[j].e=a->data[i].e;
j++;
}
}
}
}
}
int main()
{
int r,c;
TSMatrix a,b;
Init(&a);
Init(&b);
cin>>r>>c;
Creat(&a,r,c);
TSM(&a,&b);
print(&b);
return 0;
}