RuntimeError: Trying to backward through the graph a second time, but the buffers have already been freed. Specify retain_graph=True when calling backward the first time.
最开始我按照这个提示将原代码中backward()处加上了retain_graph=True代码确实能够不报错地运行,但是出现了新的问题:训练过程中显存是不断增大的,于是我最初认为,是否因为计算图保留过多导致。
经过一番查阅资料,我确实看到了类似的说法。并且了解到,实际上在大多数情况下retain_graph都应采用默认的False,除了几种特殊情况:
一个网络有两个output分别执行backward进行回传的时候: output1.backward(), output2.backward().
一个网络有两个loss需要分别执行backward进行回传的时候: loss1.backward(), loss2.backward().
但是我的代码不属于以上两种类型,于是我又开始了一番搜寻,最终在很多次尝试后在pytorch的官方论坛上找到了真正的原因:
正如图中的老哥所说,只要我们对变量进行运算了,就会加进计算图中。所以我的问题就出在循环中的变量在循环外也有另外的计算,之所以我排查了很久都没找到这个问题的原因在于:这个变量来自预训练好的网络的输出。所以在代码的较前端,我选择性的忽略掉了它。
没错,就是这里的sF,为预训练好的vgg网络提取到的特征,在训练中用到了sF。
修改方式很简单,只需将sF的计算移到循环内部即可,问题解决:
P.S. 解决了这个问题后我发现训练时显存还是在不断增大的,所以问题不在此,最终显存不断增加的问题解决在下一篇。