黎明(一)

校园招聘,很多大公司在应届生网站发布了校园招聘的消息了,看上去比求职者还要心急。
我的收藏夹里面已经分好了类:job,job待投,job已投。待投job文件夹里的链接已经多的需要滚动条来拉动查看了。因为懒得写简历,不愿意仔细阅读自己的简历,自己的特长在哪说不清楚。所以简历还不是很满意,也就不敢放肆地投进众多的公司了。
都说求职难,是难啊,僧多粥少,其实粥也不算少了,只是和尚尤其多。qq加了一个群,武大华科IT校招群,每天都有人问:有没有收到某某公司的交流会通知,我看的更绝望了,我好像没有收到过,上学期就这样了,我以为是手机太落后的原因,这学期跟妈换了一个手机,结果还是没有交流会的短信。郁闷,我的简历就那么招人鄙视吗。。
我不是技术牛人,称不上优秀,但也不是很差劲的那种吧。虽不是圣人,但也没有做过什么坏事,怎么就一点好运都没有呢。
再说实验室吧,毕业论文要开题了,同级的同学都知道要做什么题目了,唯独我的,老师就说要么做这个要么做那个。。我本是拿不定主意的主,怎么老师也这样跟我玩,最后确定用写一个项目,可是下一个项目的方案又迟迟不定。事情又是这么挤着过来的。。。
我知道,这还不是关键时候,一个月后才是。。。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
好的,以下是一段 PyTorch 实现的手写数字识别的代码: ```python import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms # 定义网络结构 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5, 1) self.conv2 = nn.Conv2d(20, 50, 5, 1) self.fc1 = nn.Linear(4*4*50, 500) self.fc2 = nn.Linear(500, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 4*4*50) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) # 加载数据集,进行数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) train_dataset = datasets.MNIST('~/pytorch_data/mnist/', train=True, download=True, transform=transform) test_dataset = datasets.MNIST('~/pytorch_data/mnist/', train=False, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) # 初始化网络,定义损失函数和优化器 model = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练网络 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

axia_1988

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值