布隆过滤器原理和基于BloomFilter的误判率展示

布隆过滤器

布隆过滤器原理

布隆过滤器是由n个Hash函数和一个二进制数组组成。
如图所示(参考,hash函数可以多个)
在这里插入图片描述

1.保存操作
  1. 发来一个请求数据hello
  2. 对数据hello经过三次hash运算,分别得到三个值(假设1,3,5)。
  3. 在对应的二进制数组里,将下标为1,3,5的值置为1。
  4. 这样hello数据就保存了。
2.查询操作
  1. 发来一个请求数据hello
  2. 对数据hello经过三次hash运算,分别得到三个值(假设1,3,5)。
  3. 在二进制数组里,将下标为1,3,5的值取出来,如果都为1,则表示该数据已经存在。
3.删除操作

布隆过滤器不好进行删除操作。
如果hash(hello)=1
这时候hash(world)=1
如果删除了hello的值,意味着word的值也会被其删除。

4.误判率

例如:
假设保存两个值,hello和word
hello对应的index为1,3,5
word对应的index为2,4,6

而此时来了一个值java,对应的index为1,4,5
查询得出结果:exist(java) = true
但其实,java这个数据并不存在,这就会产生一定的误判。

误判率代码展示(基于BloomFilter)
public class BloomTest {
    public static int size = 1000000;
    /**
     * 期望的误判率
     * 误判率越小 运算的时间越久
     */
    public static double fpp = 0.01;

    private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size, fpp);

    public static void main(String[] args) {
        // 插入10W样本
        for (int i = 0; i < size; i++) {
            bloomFilter.put(i);
        }

        int count = 0;
        // 误判率 用另外10w数据样本
        for (int i = size; i < size + 100000; i++) {
            if (bloomFilter.mightContain(i)) {
                count++;
                System.out.println(i + "被误判了");
            }
        }
        System.out.println("总的误判数量:" + count);

    }

}

在这里插入图片描述
结论
计算的数据是10W,误判的结果约等于1K,此时误判率为0.01,和我们程序设定的值一样。

问题:那是不是误判率越低越好了?
在程序里将误判率改成0.000000001,发现运算跑了好久好久…
误判率越低,需要的hash函数越多,运算越久,存储越大,消耗的性能也越高。
误判率越高,数据不准确。
如何取一个折中的值还得看具体的业务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值