布隆过滤器
布隆过滤器原理
布隆过滤器是由n个Hash函数和一个二进制数组组成。
如图所示(参考,hash函数可以多个)
1.保存操作
- 发来一个请求数据
hello
- 对数据
hello
经过三次hash运算,分别得到三个值(假设1,3,5)。 - 在对应的二进制数组里,将下标为1,3,5的值置为1。
- 这样
hello
数据就保存了。
2.查询操作
- 发来一个请求数据
hello
- 对数据
hello
经过三次hash运算,分别得到三个值(假设1,3,5)。 - 在二进制数组里,将下标为1,3,5的值取出来,如果都为1,则表示该数据已经存在。
3.删除操作
布隆过滤器不好进行删除操作。
如果hash(hello)=1
这时候hash(world)=1
如果删除了hello的值,意味着word的值也会被其删除。
4.误判率
例如:
假设保存两个值,hello和word
hello对应的index为1,3,5
word对应的index为2,4,6
而此时来了一个值java,对应的index为1,4,5
查询得出结果:exist(java) = true
但其实,java这个数据并不存在,这就会产生一定的误判。
误判率代码展示(基于BloomFilter)
public class BloomTest {
public static int size = 1000000;
/**
* 期望的误判率
* 误判率越小 运算的时间越久
*/
public static double fpp = 0.01;
private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size, fpp);
public static void main(String[] args) {
// 插入10W样本
for (int i = 0; i < size; i++) {
bloomFilter.put(i);
}
int count = 0;
// 误判率 用另外10w数据样本
for (int i = size; i < size + 100000; i++) {
if (bloomFilter.mightContain(i)) {
count++;
System.out.println(i + "被误判了");
}
}
System.out.println("总的误判数量:" + count);
}
}
结论:
计算的数据是10W,误判的结果约等于1K,此时误判率为0.01,和我们程序设定的值一样。
问题:那是不是误判率越低越好了?
在程序里将误判率改成0.000000001,发现运算跑了好久好久…
误判率越低,需要的hash函数越多,运算越久,存储越大,消耗的性能也越高。
误判率越高,数据不准确。
如何取一个折中的值还得看具体的业务。