- 博客(98)
- 资源 (13)
- 问答 (3)
- 收藏
- 关注
原创 把大模型“画”成图:LangGraph 超详细入门 + 实战
摘要: LangGraph 是一种基于有向图的工作流设计工具,突破了传统线性链式结构的限制。其核心组件包括全局共享的 State、功能节点(Node)、流转边(Edge)和完整图(Graph),通过条件分支和循环机制支持复杂流程。典型应用场景包括智能客服意图识别、代码自动修复等,能以更简洁的代码实现多轮对话、工具调用等复杂逻辑。安装简单,通过定义状态、编写节点函数、构建图形结构即可快速开发智能应用。
2026-01-12 11:56:01
452
原创 把 LLM 应用放上“手术台”:LangSmith 与 Phoenix 可观测性实战指南
随着大模型应用进入生产环境,可观测性成为关键挑战。LangSmith和Phoenix两大工具形成互补:LangSmith提供云端自动化追踪和预置仪表盘,适合快速调试和业务监控;Phoenix则专注本地化漂移检测和可视化分析,满足合规需求。最佳实践表明,开发阶段使用LangSmith监控性能指标,投产后结合Phoenix进行算法优化,可实现完整的可观测闭环。二者配合能有效解决延迟飙升、成本失控和回答错误三大典型问题,帮助团队从黑盒调试转向数据驱动的持续优化。
2026-01-12 11:55:21
553
原创 大模型评估实战:生成任务 VS 分类任务——指标、代码与踩坑全解析
模型A) 原生 ChatGPT-3.5B) 自己 LoRA 微调 7B(Chinese-Alpaca-7b + 6k 摘要数据)数据:50 篇中文财经新闻(平均 800 字)指标:ROUGE-L、BERTScore、LLM 裁判(相关性+准确性+流畅度)成本:脚本指标 0 元,LLM 裁判 ¥0.08/条 × 50 = ¥4均衡 → Accuracy不均衡 → Macro-F1 + PR-AUC + Cohen κ脚本指标(BLEU/ROUGE)快速迭代。
2026-01-08 12:31:13
863
原创 LlamaIndex 从入门到实战:一条命令跑完“建库→召回→重排→生成”全流程
数据连接器 + 索引 + 检索 + 后处理10 行代码让 LLM 读懂你的私域文件;混合召回 + 重排 + HyDE 让正确率提升 15~30%;动态插入 + 版本管理让知识库“热更新”;与 LangChain/vLLM 无缝集成,直接生产上线。
2026-01-08 12:16:42
370
原创 LangGraph 从入门到实战:用“图”把 LLM 工作流画出来,再跑起来
LangGraph:构建复杂LLM工作流的利器 传统Chain模式在处理循环、分支等复杂逻辑时存在局限,而LangGraph通过有向图模型提供了更灵活的解决方案。其核心概念包括状态(State)、节点(Node)和边(Edge),支持条件分支、循环和人机交互。 安装简单,5分钟即可构建第一个工作流。通过6个实战案例展示了LangGraph的强大功能: 带情感分析的智能客服系统 多步骤研究助手(生成子问题→搜索→汇总) 并行多路召回+重排系统 LangGraph将LLM工作流可视化、可调试,是构建复杂AI应用
2026-01-08 10:45:40
406
原创 LangChain 从入门到实战:一张全景图 + 6 大案例带你通关
LangChain = 模型 × 提示词 × 记忆 × 工具 × 链 × 代理 的“六边形战士”。用Prompts把需求讲清;用Indexes让模型“多读书”;用Memory让它“长记性”;用Tools给它“手脚”;用Agents让它“自己动”;用Callbacks让一切“可观测”。
2026-01-08 10:34:13
813
原创 零代码玩转大模型微调:LLaMA-Factory 全栈实战指南
LLaMA-Factory是一个低代码大模型微调框架,相比原生脚本具有显著优势:仅需5行代码、零学习成本、18GB显存即可训练7B模型,支持SFT/RLHF/DPO/PPO全流程。通过WebUI可快速完成数据准备(支持微信聊天记录转换)、模型训练(QLoRA优化)、评估和部署。该框架内置DeepSpeed多卡并行、断点续传、可视化监控等功能,训练后模型可导出为单文件并兼容vLLM部署。实测微调后模型回复更自然,且提供DPO等进阶优化选项,适合从入门到生产级应用的全场景需求。
2026-01-07 09:45:14
972
原创 从入门到落地:AI 大模型微调全景实战指南
文章摘要 本文系统介绍了大语言模型微调技术(Fine-Tuning),重点聚焦生产落地最成熟的SFT+LoRA/QLoRA方案。微调能以1%算力获得90%模型能力,是企业应用的最佳选择。文章详解了微调技术演进(从全参量到QLoRA)、核心概念(SFT/LoRA/RLHF等)和完整9步流程,并通过中文医疗问答模型实战演示:从数据制备(20万条医学数据)、基座选择(Qwen2.5-7B)、QLoRA配置(仅训练0.8%参数)、训练评估到vLLM部署。关键经验包括:领域指令≥1万条即可显著提升7B模型表现,单卡4
2026-01-07 09:37:00
1220
原创 从 Hugging Face 到魔搭 ModelScope:一篇搞定「开源模型社区」双雄
摘要: Hugging Face(HF)与魔搭ModelScope(MS)是两大主流模型平台,分别面向国际与中文场景。HF提供50万+模型,依赖社区生态;MS由阿里主导,专注中文SOTA模型与本土加速。下载方式多样:小型模型可通过transformers自动缓存;大型模型推荐Git LFS或镜像站(如清华/阿里云);国内用户优先使用MS镜像实现MB/s级下载。双平台支持断点续传,并可通过Ollama或vLLM快速部署。HF适合英文项目,MS更适配中文及政企需求,两者互补形成完整工具链。常见问题包括网络限速、
2026-01-07 09:26:57
734
原创 从 OpenAI 到“国产百模”:一篇搞定国内外大模型 API 调用
本文介绍了国内外主流大模型API的通用调用方法,帮助开发者实现"一次学会,到处调用"。文章首先分析了统一调用范式的必要性,随后提出3步8要素的通用调用框架。接着详细演示了OpenAI官方API及阿里通义千问、百度文心ERNIE、智谱GLM-4等国内模型的调用方式,包括账号注册、密钥获取和代码示例。最后通过横向对比给出选型建议,并提供生产级优化技巧,如环境变量管理、重试机制和并发处理等,帮助开发者实现模型自由切换。
2026-01-07 09:17:15
518
原创 驾驭AI的魔法咒语:大模型提示词工程完全指南
摘要:提示词工程是优化AI输出的关键技术,通过结构化设计提升模型表现。核心方法包括:1)明确任务目标与格式要求;2)采用角色设定、示例引导等结构化技巧;3)多轮交互细化复杂任务;4)参数调优控制输出特性。应用场景涵盖代码生成、文本润色等,需通过测试迭代建立最佳实践。高级技巧如元提示和链式推理可进一步提升效果,实际应用需结合领域知识持续优化。(149字)
2026-01-07 09:03:11
264
原创 第一章:手把手教你透彻掌握线性回归算法
线性关系是指两个变量之间的关系可以用一条直线来表示。比如一个函数y=a+bx非线性是指两个变量之间的关系不能用一条直线来表示。
2025-03-29 21:16:53
940
原创 QPS TPS RPS PV UV 等名词解释
对于一个多用户的系统,如果只有一个用户使用时系统的平均响应时间是t,当有你n个用户使用时,每个用户看到的响应时间通常并不是n×t,而往往比n×t小很多(当然,在某些特殊情况下也可能比n×t大,甚至大很多)。也就是说在处理单个请求时,在每个时间点都可能有许多资源被闲置,当处理多个请求时,如果资源配置合理,每个用户看到的平均响应时间并不随用户数的增加而线性增加。需要指出的是,响应时间的绝对值并不能直接反映软件的性能的高低,软件性能的高低实际上取决于用户对该响应时间的接受程度。:系统能同时处理的请求数。
2023-08-28 15:33:00
1061
原创 keepalived+haproxy 搭建高可用高负载高性能rabbitmq集群
keepalived实现haproxy主备,haproxy给rabbitmq做负载均衡,rabbitmq实现镜像集群,搭建一个高可用高性能高负载的集群架构
2023-08-23 14:46:19
1928
原创 nacos 集群部署
5. 修改application.properties,配置数据源为mysql,并配置连接信息,三台服务器都要修改。3. 访问http://192.168.157.128:8848/nacos,用户名nacos,密码nacos。4. 根据sql脚本创建nacos的数据库和表信息,脚本是conf目录下的nacos-mysql。6. 修改cluster.conf配置文件,三台服务器都要修改。1. 分别启动三台服务器中的nacos。至此,nacos集群搭建完成。三、 服务器配置nacos。
2022-10-10 11:19:11
1443
原创 asterisk gui的安装和使用
1. 编辑manager.conf,如下用户名为admin,密码为admin。使用svn拉去asterisk-gui代码,没有svn的可以先安装svn。一、下载asterisk-gui。二、安装asterisk-gui。在asterisk-gui目录下。在asterisk-gui目录。2. 编辑http.conf。三、 配置asterisk。启动asterisk。输入用户名密码登录。
2022-10-10 10:25:45
1203
原创 Elasticsearch-8.4.2 集群安装
至此elasticsearch集群安装完成,大家也可以安装其他的辅助工具来更好的使用elasticsearch。使用浏览器访问192.168.157.128:9200/_cat/nodes 查看各个节点信息,打星号的表示为主节点。node1配置如下,其他节点只需要改变node.name 和 host即可。3. 进入elasticsearch-8.4.2,创建data目录。7. 修改elasticsearch-8.4.2目录所属者和所属组。切换es用户,在bin目录下执行如下命令即可。四、验证是否安装完成。
2022-09-30 15:34:44
1748
原创 Kafka 集群安装
编辑config目录下的server.properties文件,在不同的节点只需要更改不同的host.name和broker.id。1. 将kafka安装包上传到服务器的/opt/apps目录下。5. 启动kafka(先启动zookeeper集群)二、安装zookeeper集群。到此kafka集群安装完毕。3. 创建kafka日志目录。4. 修改kafka配置。6. 测试生产和消费。
2022-09-30 10:34:20
2603
1
原创 Zookeeper 集群安装
在data目录下创建myid文件,并将id存入,这里的id对应的zoo.cnf中的server.id。发现node1和node2为follower,node3为leader。在zookeeper的bin目录下使用zkServer.sh启动。所以128的id为1,129的id为2,130的id为3。6. 启动每个服务器上的zookeeper。在conf/目录下创建zoo.cnf文件。到此,zookeeper集群搭建完成。二、Zookeeper的安装。2. 解压并配置环境变量。一、Java环境的安装。
2022-09-29 18:20:17
3439
原创 MySQL8.0 MGR方式搭建集群
在node1 上连接 129 的 7001 端口查看现在的主库为node1,并且其他节点连接129的7001也均为node1。造成错误的原因是这个配置不是ip:port,而是三个连续的数字比如官网给的24091 24092 24093即可。在node2 上连接 129 的 7002 端口,显示连接的为node2。在node1 上连接 129 的 7002 端口,显示连接的为node3。在node3上连接 129 的 7002 端口,显示连接的为node3。5. 从库只有查询的权力,没有更改的权限。
2022-09-29 15:07:26
3062
1
原创 MySQL 8.0 安装
生成了一个随机密码,需要记住这个随机密码,我这里的为 vqT>BfLed0IT。6. 复制mysql.server 到 /etc/init.d 目录下。3. 上传到服务器指定目录,我这里是/opt/apps。3. 修改其他ip地址可以连接本机mysql。7. 切换到mysql用户,启动mysql。2. 修改mysql root 用户密码。至此,MySQL8.0安装完成。使用mysql连接工具连接测试。2. 增加mysql用户和组。5. 初始化mysql。三、MySQL相关配置。1. 连接MySQL。
2022-09-28 17:43:54
1451
原创 redis主从+哨兵+集群模式搭建详解
重新启动192.168.157.128节点的redis,查看sentinel.log信息,可以看到此时128节点的redis变成了slave 从节点了。可以看到redis-master的状态先变成down,然后重新选择一个master,192.168.157.130成为新的主节点。sentinel monitor 执行服务器ip和端口,并且指定当有2台哨兵认为主节点挂了,则对主节点进行容灾切换。protected-mode 保护模式,外部是否可以访问,这是设置为no,外部可以访问。
2022-09-27 12:06:46
2184
原创 Nginx + keepalived 集群搭建
1. 修改keepalived.conf配置,主要是增加一个 vrrp_instance,原来的MASTER变为BACKUP,原来的BACKUP变为MASTER。双机主主模式:使用两台负载均衡服务器,互为主备,两台服务器都属于活动状态,只有当其中一台发生故障时由另一台接管故障服务器的请求。脚本所做的工作就是判断nginx是否还在运行,没有运行就重新启动一下nginx,如果重新启动还是失败的话,就停止keepalived服务。双机主备模式下,只有master停止服务之后,从服务器才能提供服务。
2022-09-26 16:37:37
2339
原创 Springboot 集成freemarker页面静态化
页面静态化在一些大流量场景应用很多,需要学一下,各位快去学一下吧。二、配置application.yml。
2022-09-23 18:32:02
439
原创 Springboot 集成kafka
解释:这里定义了消费者id为ifun-001,消费者组id为ifun-01,同时监听两个topic,ifun1和ifun2,其中监听ifun1的0号分区,ifun2的0号和1号分区,其中1号分区开始的offset为8,也就是说如果next-offset大于8就会消费,小于8不会消费。消息过滤器可以在消息抵达consumer之前被拦截,在实际应用中,我们可以根据自己的业务逻辑,筛选出需要的信息再交由KafkaListener处理,不需要的消息则过滤掉。二、修改application.yml配置。
2022-09-17 17:08:30
5542
原创 docker 搭建ELK日志采集系统
一般来说数据流动是Filebeat对日志文件进行搜集,然后给到Kafka,再给到Logstash过滤,然后存到Elasticsearch中,最后在Kibana的可视化界面进行搜索。 ELK docker 安装
2022-09-14 16:47:12
1240
3
google-api-annotation.rar
2022-01-17
libxml2-2.9.1-6.el7.5.x86_64.rpm
2021-07-07
SonarQube api接口使用报错
2021-06-23
gitlab CI_JOB_TOKEN 是在哪里可以得到
2021-07-08
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅