最长不下降子序列的O(n^2)算法和O(nlogn)算法

本文介绍了求解最长不下降子序列的两种算法,一种是简单但效率较低的O(n^2)方法,另一种则是更为高效的O(nlogn)算法,并详细解释了这两种算法的工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念定义:

设有一个正整数序列 a[n] : a1,a2,...,an ,对于下标 i1<i2<...<ih ,若有 ai1,ai2,...,aih , 则称序列 a[n] 含有一个长度为h的不下降子序列。

例如,对于序列3 7 9 16 38 24 27 38 44 49 21 52 63 15
对于下标 i1=1,i2=4,i3=5,i4=9,i5=13 , 满足

13<16<38<44<63

则存在长度为5的不下降子序列。

问题描述:

当给定序列 a1,a2,an 后,求出最长的不下降序列的长度?


解法

简单的O(n^2)的算法

对于任意的 i , 定义d[i]是以 ai 结束的最长不下降子序列的长度,那么显然,问题的解为d[n]。
不妨假设,已求得以 a1,a2,...,aj1 结束的最长不下降子序列的长度分别为 d[1],d[2],...,d[j1] ,其中 d[1]=1
那么对于 ai ,其中 i<j1 , 若 aiaj ,则以 ai,aj 结束的不下降子序列长度为的 d[i]+1 ,显然 ai 结束的最长不下降子序列的长度

d[j]=max(d[i])+1

其中 1ij1,aiaj
更新公式中每次都得从头遍历整个d[i],所以算法复杂度为O(n^2)

复杂点的O(nlogn)算法

O(nlogn)的算法关键是它建立了一个数组b[],b[i]表示长度为i的不下降序列中结尾元素的最小值,用k表示数组目前的长度,算法完成后k的值即为最长不下降子序列的长度。
具体点来讲:
不妨假设,当前已求出的长度为k,则判断a[i]和b[k]:

  1. 如果 b[k]a[i] ,即a[i]大于长度为k的序列中的最后一个元素,这样就可以使序列的长度增加1,即k=k+1,然后更新b[k]=a[i];

  2. 如果 b[k]>a[i] ,那么就在b[1]…b[k]中找到最大的j,使得b[j] < a[i],即a[i]大于长度为j的序列的最后一个元素,显然,b[j+1] a[i], 那么就可以更新长度为j+1的序列的最后一个元素,即b[j+1]=a[i]。

可以注意到:b[i]单调递增,很容易理解,长度更长了,d[k]的值是不会减小的,更新公式可以用二分查找,所以算法复杂度为O(logn)。

### 最长下降子序列 O(nlogn) 算法实现与解释 #### 一、算法原理 最长下降子序列(LDS, Longest Decreasing Subsequence),类似于最长上升子序列,可以通过动态规划加二分查找的方法,在O(n log n)的时间复杂度下解决。核心在于维护一个列表`d`,其中存储着可能成为最终LDS一部分的最小结尾元素。每当遇到一个新的数时,如果它小于`d`中的最后一个元素,则更新`d`;否则通过二分查找找到其应在位置并替换之。 #### 二、具体步骤说明 - 初始化一个空的结果数组 `f` 变量 `len` 表示当前已知的最大长度。 - 遍历输入序列中的每一个数字: - 使用C++标准库函数`lower_bound()`寻找第一个大于等于该数字的位置。 - 如果此位置位于现有记录之外,则扩展结果集;反之则用新数值替代旧值以保持潜在解空间最优性。 上述过程确保了每次迭代都能维持住“尽可能短”的递减路径特性,从而使得最后得到的答案既满足条件又具有最大长度[^1]。 #### 三、代码实例 下面是采用 C++ 编写的完整程序: ```cpp #include <iostream> #include <vector> #include<algorithm> using namespace std; int main(){ int n; cin >> n; vector<int> nums(n+1), f(n+1); for(int i = 1; i <= n; ++i){ cin >> nums[i]; } int len = 0; f[++len] = nums[1]; for (int i = 2; i <= n; ++i) { // 寻找nums[i]应该放置的位置 auto pos = upper_bound(f + 1, f + len + 1, nums[i], greater<int>()) - f; if (pos == len + 1) { f[++len] = nums[i]; } else { f[pos] = nums[i]; } } cout << "Length of LDS is: " << len << "\n\n"; } ``` 这段代码实现了对给定整数序列求解其最长严格递减子序列的功能,并输出对应的长度。注意这里使用了`upper_bound`配合自定义比较器`greater<int>()`来适应于寻找降序排列下的插入点[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值