hdu4678 Mine 解题报告

借ds大牛的一句话,此题是一个道很基础的sg题

不知道的可以看这里

http://blog.csdn.net/ayecsz/article/details/10078749

http://blog.csdn.net/ayecsz/article/details/10079047

每个格子可以是数字或者空白格,点空白格可以将这一块的空白格和周围的数字格都显示出来,所以我们可以用BFS将方格进行分块。这样就抽象为了Nim博弈问题,有多少块就有多少堆石子,每堆石子每次可取1个或全部取完,所以sg[0] = 0,sg[1] = 1; sg[2] = 2; sg[3] = 1; sg[4] = 2; sg[5] = 1........ (1,2循环)然后做一次异或操作即可。

注意:每堆石子个数 = 数字格个数+是否有空白格(有是1,没有是0),因为将数字格点完后还可以点一次空白格。

其实感觉这道题主要还是考BFS。。。

c++代码:

#include<cstdio>
#include<cstring>
const int c1[8] = {-1,-1,-1,0,1,1,1,0};
const int c2[8] = {-1,0,1,1,1,0,-1,-1};
const int MAX = 1002;
int n,m,k;
int a[MAX][MAX],num[MAX*MAX];
bool flag[MAX][MAX];
struct
{
    int x,y;
}que[MAX*MAX];
int bfs(int fx,int fy)
{
    int x,y,head,tail,total,l;
    que[1].x = fx;
    que[1].y = fy;
    flag[fx][fy] = true;
    head = 0; tail = 1;
    total = 1;
    while (head < tail)
    {
        head++;
        x = que[head].x;
        y = que[head].y;
        if (a[x][y] == 0)
        {
            for (l = 0; l < 8; l++)
            if (flag[x+c1[l]][y+c2[l]] == false)
            {
                tail++;
                que[tail].x = x+c1[l];
                que[tail].y = y+c2[l];
                flag[x+c1[l]][y+c2[l]] = true;
            }
        }
        else total++;
    }
    return total;
}
int main()
{
    int temp,kase,xx,yy,x,y,tot,ans,i,j,l;
    scanf("%d",&temp);
    for (kase = 1; kase <= temp; kase++)
    {
        scanf("%d%d%d",&n,&m,&k);
        memset(a,0,sizeof(a));
        memset(flag,false,sizeof(flag));
        for (i = 0; i <= n+1; i++) flag[i][m+1] = flag[i][0] = true;
        for (i = 0; i <= m+1; i++) flag[n+1][i] = flag[0][i] = true;
        //
        for (i = 1; i <= k; i++)
        {
            scanf("%d%d",&x,&y);
            x++; y++;
            a[x][y] = -1;
            flag[x][y] = true;
            for (l = 0; l < 8; l++)
            {
                xx = x + c1[l];
                yy = y + c2[l];

                if (a[xx][yy] != -1) a[xx][yy]++;
            }
        }
        tot = 0;
        for (i = 1; i <= n; i++)
        for (j = 1; j <= m; j++)
        if (a[i][j] == 0 && flag[i][j] == false)
        {
            num[++tot] = bfs(i,j);
            if (num[tot] % 2 == 0) num[tot] = 2;
            else num[tot] = 1;
        }
        for (i = 1; i <= n; i++)
        for (j = 1; j <= m; j++)
        if (flag[i][j] == false)
        {
            num[++tot] = 1;
        }
        ans = 0;
        for (i = 1; i <= tot; i++)
            ans = ans^num[i];
        printf("Case #%d: ",kase);
        if (ans == 0) printf("Fanglaoshi\n");
        else printf("Xiemao\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值