题目描述
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:
在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
class Solution {
public:
int FindGreatestSumOfSubArray(vector<int> array) {
}
};
使用动态规划:
dp[i]表示以元素array[i]结尾的最大连续子数组和.
以[-2,-3,4,-1,-2,1,5,-3]为例
可以发现,
dp[0] = -2
dp[1] = -3
dp[2] = 4
dp[3] = 3
以此类推,会发现
dp[i] = max{dp[i-1]+array[i],array[i]}.
class Solution {
public:
int FindGreatestSumOfSubArray(vector<int> array) {
int result = array[0]; //记录当前所有子数组的和的最大值
int current = array[0]; //包含array[i]的连续数组最大值
for(int i=1; i<array.size();i++)
{
current = current+array[i];
if(current < array[i])
{
current = array[i];
}
if(result < current)
{
result = current;
}
}
return result;
}
};