30.连续子数组的最大和

题目描述
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:
在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)

class Solution {
public:
    int FindGreatestSumOfSubArray(vector<int> array) {
    
    }
};

使用动态规划:
dp[i]表示以元素array[i]结尾的最大连续子数组和.
以[-2,-3,4,-1,-2,1,5,-3]为例
可以发现,
dp[0] = -2
dp[1] = -3
dp[2] = 4
dp[3] = 3
以此类推,会发现
dp[i] = max{dp[i-1]+array[i],array[i]}.

class Solution {
public:
    int FindGreatestSumOfSubArray(vector<int> array) {
        int result = array[0];    //记录当前所有子数组的和的最大值
        int current = array[0];    //包含array[i]的连续数组最大值
        
        for(int i=1; i<array.size();i++)
        {
            current = current+array[i];
            if(current < array[i])
            {
                current = array[i];
            }
            if(result < current)
            {
                result = current;
            }
        }
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值