Question
Follow up for problem “Populating Next Right Pointers in Each Node”.
What if the given tree could be any binary tree? Would your previous solution still work?
Note:
You may only use constant extra space.
For example,
Given the following binary tree,
1
/ \
2 3
/ \ \
4 5 7
After calling your function, the tree should look like:
1 -> NULL
/ \
2 -> 3 -> NULL
/ \ \
4-> 5 -> 7 -> NULL
Hide Tags Tree Depth-first Search
Hide Similar Problems (M) Populating Next Right Pointers in Each Node
Solution
The immediate state is that all nodes of several first levels are processed. We are ready to process the next level. The first thing is to traverse all node in current level, so that we can get all children nodes in the next level. Curhead is needed to make sure we find the header pointer for the next level. The ending condition is that lastcur is None.
So we maintain two headpointers, lasthead and curhead, and two pointers for traversing two levels.
# Definition for binary tree with next pointer.
# class TreeLinkNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
# self.next = None
class Solution(object):
def connect(self, root):
"""
:type root: TreeLinkNode
:rtype: nothing
"""
if root==None:
return root
lasthead, curhead, lastcur, cur = head, None, None, None
while lasthead!=None: # begin to do in current line
lastcur = lasthead
while lastcur!=None: # travese all nodes in this level
if lastcur.left!=None: # check whether we have gotten first node in the next level
if curhead==None:
curhead = lastcur.left
pre = curhead
else:
pre.next = lastcur.left
pre = pre.next
if lastcur.right!=None:
if curhead==None:
curhead = lastcur.right
pre = curhead
else:
pre.next = lastcur.right
pre = pre.next
lastcur = lastcur.next
lasthead = curhead # update lasthead
curhead = None # in order to compare in the next while loop