题意:
物品数n和背包容量v,以及n个物品的体积,问有多少种方案是再也装不下其他物品的;
思路:
按体积从小到大排序,枚举每个物品作为刚好不能再放下的情况。对于每个物品刚好放不下的情况,肯定是
因为拿了比它小的所有物品,因为对于每种方案你判断它是不是一种答案,是通过判断该种方案没有拿的物
品里面最小的物品还能不能再拿。能拿则不是答案,不能拿的话其他的物品肯定也不能拿。
所以dp数组为 dp[拿到该体积] = 有多少种拿法;
sum为比它小的物品的体积总和;初始化dp[sum] = 1,其余全为0;
//状态转移方程为:
for(int j = i+1; j<=n; j++)//对于每个比枚举的物品大的物品
for(int k = v-s[j]; k>=sum; k--) dp[k+s[j]]+=dp[k];
//答案:
for(int j = max(1,v-s[i]+1); j<=v; j++) ans+=dp[j];
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
const int maxn = 2e3;
int dp[maxn],s[50];
int main()
{
ios::sync_with_stdio(false);
// freopen("in.txt", "r", stdin);
int T,cas=1;
cin>>T;
while(T--)
{
int n,sum=0,v,ans = 0;
cin>>n>>v;
s[0] = 0;
for(int i = 1; i<=n; i++) cin>>s[i];
sort(s+1,s+1+n);
for(int i = 1; i<=n; i++)
{
memset(dp,0,sizeof(dp));
sum+=s[i-1];
dp[sum] = 1;
for(int j = i+1; j<=n; j++)//对于每个比枚举的物品大的物品
for(int k = v-s[j]; k>=sum; k--) dp[k+s[j]]+=dp[k];
for(int j = max(1,v-s[i]+1); j<=v; j++) ans+=dp[j];
}
cout<<cas++<<" "<<ans<<endl;
}
return 0;
}