hdu 3572 网络流 最大流

题意:有n个任务和m台机器,每个任务i必须在si天之后才能开始 (包括),在ei之前完成(包括),任务需要pi天完成。一直每台机器一次只能做一个任务。一个任务一天内只能在一个机器上做,但是不同的天可以用不同的机器,求是否能按时完成任务。

思路:这是一道最大流问题。关键时间图,我们可以建立一个超级源点与每个任务相连并且容量是pi,每个任务再与所对应的天建边,流量是1,然后每一天在与超级汇点建边,流量是m。然后用sap求出最大流量,若最大流量与sum(pi)相等,则Yes,否则No。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>

using namespace std;

const int maxn = 1111;
const int maxm = 505000;
const int oo = 1 << 30;

int idx;
int cur[maxn], pre[maxn];
int dis[maxn], gap[maxn];
int aug[maxn], head[maxn];

struct Node
{
    int u, v, w;
    int next;
}edge[maxm];

void addEdge(int u, int v, int w)
{
    edge[idx].u = u;
    edge[idx].v = v;
    edge[idx].w = w;
    edge[idx].next = head[u];
    head[u] = idx++;

    edge[idx].u = v;
    edge[idx].v = u;
    edge[idx].w = 0;
    edge[idx].next = head[v];
    head[v] = idx++;
}

int SAP(int s, int e, int n)
{
    int max_flow = 0, v, u = s;
    int id, mindis;
    aug[s] = oo;
    pre[s] = -1;
    memset(dis, 0, sizeof(dis));
    memset(gap, 0, sizeof(gap));
    gap[0] = n; // 我觉得这一句要不要都行,因为dis[e]始终为0
    for (int i = 0; i <= n; ++i)
    {   // 初始化当前弧为第一条弧
        cur[i] = head[i];
    }

    while (dis[s] < n)
    {
        bool flag = false;
        if (u == e)
        {
            max_flow += aug[e];
            for (v = pre[e]; v != -1; v = pre[v]) // 路径回溯更新残留网络
            {
                id = cur[v];
                edge[id].w -= aug[e];
                edge[id^1].w += aug[e];
                aug[v] -= aug[e]; // 修改可增广量,以后会用到
                if (edge[id].w == 0) u = v; // 不回退到源点,仅回退到容量为0的弧的弧尾
            }
        }
        for (id = cur[u]; id != -1; id = edge[id].next)
        {   // 从当前弧开始查找允许弧
            v = edge[id].v;
            if (edge[id].w > 0 && dis[u] == dis[v] + 1) // 找到允许弧
            {
                flag = true;
                pre[v] = u;
                cur[u] = id;
                aug[v] = min(aug[u], edge[id].w);
                u = v;
                break;
            }
        }
        if (flag == false)
        {
            if (--gap[dis[u]] == 0) break; /* gap优化,层次树出现断层则结束算法 */
            mindis = n;
            cur[u] = head[u];
            for (id = head[u]; id != -1; id = edge[id].next)
            {
                v = edge[id].v;
                if (edge[id].w > 0 && dis[v] < mindis)
                {
                    mindis = dis[v];
                    cur[u] = id; // 修改标号的同时修改当前弧
                }
            }
            dis[u] = mindis + 1;
            gap[dis[u]]++;
            if (u != s) u = pre[u]; // 回溯继续寻找允许弧
        }
    }
    return max_flow;
}

int main()
{
    int t, n, m, pi, si, ei;
    int Max, sum, source, sink, vn;
    scanf("%d", &t);
    for (int cas = 1; cas <= t; ++cas)
    {
        idx = 0;
        memset(head, -1, sizeof(head));
        sum = 0; source = 0; Max = 0;
        scanf("%d %d", &n, &m);
        for (int i = 1; i <= n; ++i)
        {
            scanf("%d %d %d", &pi, &si, &ei);
            sum += pi;
            Max = max(Max, ei);
            addEdge(source, i, pi);
            for (int j = si; j <= ei; ++j)
            {
                addEdge(i, n + j, 1);
            }
        }
        sink = n + Max + 1;
        vn = sink + 1;
        for (int i = 1; i <= Max; ++i)
        {
            addEdge(n + i, sink, m);
        }
        if (SAP(source, sink, vn) == sum)
            printf("Case %d: Yes\n\n", cas);
        else printf("Case %d: No\n\n", cas);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值