hdu 1853 最小费用最大流

/*
一. 如果几个点构成一个环的话,那么这每一个点的入度与出度都是为1的.....
二. 设一个源点0,汇点2*n+1,源点连接每一个u,容量为1,费用为0;汇点连接每一个v+n,
容量也为1,费用为0;从u到v建一条边,容量为1,费用为w;
那么这就转换成了最小费用最大流的模板题,假设最后最大流为n,
那么说明恰好每一个点都是入度出度为1,即构成了环,从而得到题目做要求的。
*/
#include<iostream>
#include<algorithm>
#include<memory.h>
#include<queue>
#include<cstdio>
using namespace std;
const int M=202;
const int MAXN=40002;
const int inf=0x3f;
int pre[MAXN];          // pre[v] = k:在增广路上,到达点v的边的编号为k
int dis[MAXN];          // dis[u] = d:从起点s到点u的路径长为d
int vis[MAXN];         // inq[u]:点u是否在队列中
int path[MAXN];
int head[MAXN];
int n,m,NE,sink,tot,ans,max_flow;
struct node
{
    int u,v,cap,cost,next;
} Edge[MAXN];
void addEdge(int u,int v,int cap,int cost)
{
    Edge[NE].u=u;
    Edge[NE].v=v;
    Edge[NE].cap=cap;
    Edge[NE].cost=cost;
    Edge[NE].next=head[u];
    head[u]=NE++;
    Edge[NE].v=u;
    Edge[NE].u=v;
    Edge[NE].cap=0;
    Edge[NE].cost=-cost;
    Edge[NE].next=head[v];
    head[v]=NE++;
}
bool SPFA(int s,int t)                   //  源点为0,汇点为sink。
{
    int i;
    memset(dis,inf,sizeof(dis));
    memset(vis,0,sizeof(vis));
    memset(pre,-1,sizeof(pre));
    dis[s] = 0;
    queue<int>q;
    q.push(s);
    vis[s] =1;
    while(!q.empty())        //  这里最好用队列,有广搜的意思,堆栈像深搜。
    {
        int u =q.front();
        q.pop();
        for(i = head[u]; i != -1; i = Edge[i].next)
        {
            int v = Edge[i].v;
            if(Edge[i].cap >0&& dis[v] > dis[u] + Edge[i].cost)
            {
                dis[v] = dis[u] + Edge[i].cost;
                pre[v] = u;
                path[v]=i;
                if(!vis[v])
                {
                    vis[v] =1;
                    q.push(v);
                }
            }
        }
        vis[u] =0;
    }
    if(pre[t]==-1)
        return false;
    return true;
}
void end(int s,int t)
{
    int u, p,sum = inf;
    for(u=t; u!=0; u=pre[u])
    {
        sum = min(sum,Edge[path[u]].cap);
    }
    max_flow+=sum;
    for(u = t; u != 0; u=pre[u])
    {
        Edge[path[u]].cap -= sum;
        Edge[path[u]^1].cap += sum;
        ans += sum*Edge[path[u]].cost;     //  cost记录的为单位流量费用,必须得乘以流量。
    }
}
int main()
{
    int i,j,k,cas=1,t,u,v,w;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        NE=0,tot=0,ans=0;
        max_flow=0;
        sink=n*2+1;
        memset(head,-1,sizeof(head));
        for(i=1;i<=n;i++)
        addEdge(0,i,1,0);
        for(i=1;i<=m;i++)
        {
            scanf("%d%d%d",&u,&v,&w);
            addEdge(u,v+n,1,w);
        }
        for(i=1;i<=n;i++)
        {
            addEdge(i+n,sink,1,0);
        }
        while(SPFA(0,sink))
        {
          //  printf("OK  %d\n",cas++);
            end(0,sink);
        }
        if(max_flow==(sink-1)/2)
        printf("%d\n",ans);
        else cout<<-1<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值