/*
一. 如果几个点构成一个环的话,那么这每一个点的入度与出度都是为1的.....
二. 设一个源点0,汇点2*n+1,源点连接每一个u,容量为1,费用为0;汇点连接每一个v+n,
容量也为1,费用为0;从u到v建一条边,容量为1,费用为w;
那么这就转换成了最小费用最大流的模板题,假设最后最大流为n,
那么说明恰好每一个点都是入度出度为1,即构成了环,从而得到题目做要求的。
*/
#include<iostream>
#include<algorithm>
#include<memory.h>
#include<queue>
#include<cstdio>
using namespace std;
const int M=202;
const int MAXN=40002;
const int inf=0x3f;
int pre[MAXN]; // pre[v] = k:在增广路上,到达点v的边的编号为k
int dis[MAXN]; // dis[u] = d:从起点s到点u的路径长为d
int vis[MAXN]; // inq[u]:点u是否在队列中
int path[MAXN];
int head[MAXN];
int n,m,NE,sink,tot,ans,max_flow;
struct node
{
int u,v,cap,cost,next;
} Edge[MAXN];
void addEdge(int u,int v,int cap,int cost)
{
Edge[NE].u=u;
Edge[NE].v=v;
Edge[NE].cap=cap;
Edge[NE].cost=cost;
Edge[NE].next=head[u];
head[u]=NE++;
Edge[NE].v=u;
Edge[NE].u=v;
Edge[NE].cap=0;
Edge[NE].cost=-cost;
Edge[NE].next=head[v];
head[v]=NE++;
}
bool SPFA(int s,int t) // 源点为0,汇点为sink。
{
int i;
memset(dis,inf,sizeof(dis));
memset(vis,0,sizeof(vis));
memset(pre,-1,sizeof(pre));
dis[s] = 0;
queue<int>q;
q.push(s);
vis[s] =1;
while(!q.empty()) // 这里最好用队列,有广搜的意思,堆栈像深搜。
{
int u =q.front();
q.pop();
for(i = head[u]; i != -1; i = Edge[i].next)
{
int v = Edge[i].v;
if(Edge[i].cap >0&& dis[v] > dis[u] + Edge[i].cost)
{
dis[v] = dis[u] + Edge[i].cost;
pre[v] = u;
path[v]=i;
if(!vis[v])
{
vis[v] =1;
q.push(v);
}
}
}
vis[u] =0;
}
if(pre[t]==-1)
return false;
return true;
}
void end(int s,int t)
{
int u, p,sum = inf;
for(u=t; u!=0; u=pre[u])
{
sum = min(sum,Edge[path[u]].cap);
}
max_flow+=sum;
for(u = t; u != 0; u=pre[u])
{
Edge[path[u]].cap -= sum;
Edge[path[u]^1].cap += sum;
ans += sum*Edge[path[u]].cost; // cost记录的为单位流量费用,必须得乘以流量。
}
}
int main()
{
int i,j,k,cas=1,t,u,v,w;
while(scanf("%d%d",&n,&m)!=EOF)
{
NE=0,tot=0,ans=0;
max_flow=0;
sink=n*2+1;
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++)
addEdge(0,i,1,0);
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w);
addEdge(u,v+n,1,w);
}
for(i=1;i<=n;i++)
{
addEdge(i+n,sink,1,0);
}
while(SPFA(0,sink))
{
// printf("OK %d\n",cas++);
end(0,sink);
}
if(max_flow==(sink-1)/2)
printf("%d\n",ans);
else cout<<-1<<endl;
}
return 0;
}
hdu 1853 最小费用最大流
最新推荐文章于 2018-08-23 22:51:03 发布