hdu 3848 CC on the tree 简单树形dp

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3848

题目大意:求一棵树中,距离最短的两个叶节点之间的距离。

思路:树形dp

dp[u][j] 表示以u 为根,摘了j个苹果的最小值!

那么,边界条件为:  if(cc[u]==1) dp[u][1]=0;

状态转移方程为:

       int tmp=dp[u][1];
        dp[u][1]=min(dp[u][1],dp[v][1]+val);
        dp[u][2]=min(tmp+dp[v][1]+val,dp[u][2]);
         ans=min(ans,dp[u][2]);

ans 即为要求结果!

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=10002;
const int inf=1<<29;
struct node
{
    int u,v,val,next;
} Edge[maxn<<2];
int head[maxn],n,dp[maxn][3];
int cc[maxn],NE,ans,vis[maxn];
void addEdge(int u,int v,int val)
{
    Edge[NE].u=u;
    Edge[NE].v=v;
    Edge[NE].val=val;
    Edge[NE].next=head[u];
    head[u]=NE++;
}
void init()
{
    NE=0;
    ans=inf;
    int i,j;
    memset(cc,0,sizeof(cc));
    memset(vis,0,sizeof(vis));
    memset(head,-1,sizeof(head));
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=2;j++)
        dp[i][j]=inf;
    }
}
void dfs(int u,int fa)
{
    int i,j,v,val;
    if(cc[u]==1) dp[u][1]=0;
    for(i=head[u];i!=-1;i=Edge[i].next)
    {
        v=Edge[i].v;
        val=Edge[i].val;
        if(v==fa) continue;
        dfs(v,u);
        int tmp=dp[u][1];
        dp[u][1]=min(dp[u][1],dp[v][1]+val);
        dp[u][2]=min(tmp+dp[v][1]+val,dp[u][2]);
         ans=min(ans,dp[u][2]);
    }
}
int main()
{
    while(scanf("%d",&n),n)
    {
        int i,j,u,v,val;
        init();
        for(i=1; i<n; i++)
        {
            scanf("%d%d%d",&u,&v,&val);
            addEdge(u,v,val);
            addEdge(v,u,val);
            cc[u]++,cc[v]++;
            vis[v]=1;
        }
        for(i=1; i<=n; i++) if(!vis[i])break;
        dfs(i,0);
        printf("%d\n",ans);
    }
    return 0;
}
/*
7
1 2 1
2 3 2
3 4 1
4 5 1
3 6 3
6 7 4
2
1 2 3
5
1 2 2
1 3 3
2 4 1
2 5 4
*/


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值