hdu4786简要题解

简要题意:给出一个边权为1或0的无向图,求一颗生成树,使得边权和为斐波那契数。


这里有一个重要的结论:一张边权为1或0的无向图,如果权值p在最大生成树权值与最小生成树权值之间,那么一定可以构造出一棵权值为p的生成树。


这样就好办了。先求出最大生成树与最小生成树的权值,然后判断这两者之间是否有一个斐波那契数就可以了。


详见代码。

#include<iostream>
#include<algorithm> 
#include<cstdio>
#include<queue>
#include<cmath>
#include<stack>
#include<vector>
using namespace std;

const int N = 100001;

struct node {
    int u, v;
    bool w;
    bool operator < (const node b) const {
        return w < b.w;
    }
}edge[N];

int fa[N];

long long fib[100];

int find(int x) {
    return fa[x] == x ? x : fa[x] = find(fa[x]);
}

int main() {
//    freopen("OI.out", "w", stdout);
    
	//给斐波那契打表
    fib[1] = fib[2] = 1;
    for(int i = 3; i <= 100; i++)
        fib[i] = fib[i - 1] + fib[i - 2];
    
    int T;
    cin >> T;
    for(int ijk = 1; ijk <= T; ijk++) {
        printf("Case #%d: ", ijk);
        int n, m;
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= m; i++) scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w);
        sort(edge + 1, edge + 1 + m);
        
        int mx = 0, mn = 0;
        int cnt = 0;
        
		//构造最小生成树。
        for(int i = 1; i <= n; i++) fa[i] = i;
        for(int i = 1; i <= m; i++) {
            if(cnt == n - 1) break;
            
            int x = find(edge[i].u), y = find(edge[i].v);
            if(x != y) {
                cnt++;
                mn += edge[i].w;
                fa[x] = y;
            }
        }
        
        if(cnt < n - 1) { //无法构成生成树,下同
            printf("No\n");
            continue;
        }
        
		//构造最大生成树
        cnt = 0;
        for(int i = 1; i <= n; i++) fa[i] = i;
        for(int i = m; i >= 1; i--) {
            if(cnt == n - 1) break;
            
            int x = find(edge[i].u), y = find(edge[i].v);
            if(x != y) {
                cnt++;
                mx += edge[i].w;
                fa[x] = y;
            }
        }
        
        if(cnt < n - 1) { 
            printf("No\n");
            continue;
        }
        
		//两者之间是否有一个斐波那契
        for(int i = 1; ; i++)
            if(fib[i] >= mn && fib[i] <= mx) {
                printf("Yes\n");
                break;
            } else if(fib[i] > mx){
                printf("No\n");
                break;
            }
//        printf("%d %d\n", mx, mn);
    } 
    return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值