题意:给出n 个数 的序列 问 从n个数删去任意个数 删去的数后的序列b1 b2 b3 ......bk k|bk
思路: 这种题目都有一个特性 就是取到bk 的时候 需要前面有个bk-1的序列前置 这个时候暴力会多一个n 的复杂度
所以只要定义一个状态(j)表示选择了j个数 这个时候就可以转移到j+1 了
定义状态:dp[i][j] 前i个数 选择了j个
dp[i][j]=dp[i-1][j-1]+dp[i-1][j] ( j|a[i] ) 这个 选+不选
dp[i][j]=dp[i-1][j] ( j|a[i]不成立 )
这里无法用n^2的复杂度过 而 我们知道 一个数的因子数可以用sqrt(j)的时间求出来 但是j 和a[i]/j 两个因子的大小不确定 所以就会影响dp进程 因为dp要从j到j+1从小到大转移(因为二维开不下 需要滚动 不然可以随便顺序)
( 数的因子是很稀疏的 所以不会超时 )
1 #include<bits/stdc++.h> 2 #define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;i++) 3 #define MS(arr,arr_value) memset(