C. Multiplicity 简单数论+dp(dp[i][j]=dp[i-1][j-1]+dp[i-1][j] 前面序列要满足才能构成后面序列)+sort...

该博客介绍了如何解决一个数论问题,即给定一个序列,找出所有可能删除数的方式,使得剩余序列满足任意下标k的元素能被其前k个元素整除。通过动态规划方法,利用数的因子特性,减少计算复杂度,避免平方级别的计算,最终达到平方根级别的解决方案。博主分享了解题思路和代码实现,强调了数的因子稀疏性在防止超时方面的作用。
摘要由CSDN通过智能技术生成

题意:给出n 个数 的序列 问 从n个数删去任意个数  删去的数后的序列b1 b2 b3 ......bk  k|bk

思路: 这种题目都有一个特性 就是取到bk 的时候 需要前面有个bk-1的序列前置  这个时候暴力会多一个n 的复杂度

所以只要定义一个状态(j)表示选择了j个数 这个时候就可以转移到j+1 了

定义状态:dp[i][j] 前i个数 选择了j个 

dp[i][j]=dp[i-1][j-1]+dp[i-1][j] ( j|a[i] ) 这个 选+不选

dp[i][j]=dp[i-1][j]    ( j|a[i]不成立 )

这里无法用n^2的复杂度过 而 我们知道 一个数的因子数可以用sqrt(j)的时间求出来 但是j 和a[i]/j 两个因子的大小不确定 所以就会影响dp进程 因为dp要从j到j+1从小到大转移(因为二维开不下 需要滚动 不然可以随便顺序)

( 数的因子是很稀疏的 所以不会超时  )

 

 1 #include<bits/stdc++.h>
 2 #define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;i++)
 3 #define MS(arr,arr_value) memset(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值