云朵来信
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
96、WDTourism:个性化旅游推荐系统解析
WDTourism 是一个基于本体和自然语言处理的个性化旅游推荐系统。系统通过自然语言预处理模块解析用户意图,并结合个性化推荐模块、旅游领域本体模块和用户画像模块,实现景区检索、路线扩展、时空关联查询及个性化排序等功能。系统采用本体建模、语义标注、用户兴趣建模等技术,提供精准的个性化推荐服务。实验验证了景区相似度计算和路线匹配的有效性,系统准确率接近90%,具有广泛的应用前景。原创 2025-08-30 01:45:31 · 48 阅读 · 0 评论 -
95、提升主题无关压力检测模型与个性化旅游推荐系统的研究
本博文研究了提升主题无关压力检测模型和基于语义网的个性化旅游推荐系统WDTourism。在压力检测领域,通过改进生物信号处理方法并采用随机森林、支持向量机和神经网络模型,在准确性和性能上实现了显著提升。而在旅游推荐方面,WDTourism系统结合语义网技术,利用本体构建和用户画像,实现了更全面且个性化的旅游路线推荐。研究还展望了未来优化方向,包括融合更多生物特征和提升旅游推荐的智能化水平,为压力管理和智慧旅游发展提供了新思路。原创 2025-08-29 09:34:29 · 46 阅读 · 0 评论 -
94、面向消费级可穿戴设备的改进型独立于受试者的压力检测模型
本文研究了消费级可穿戴设备记录的生理数据在自动压力检测中的应用,提出了一种改进的独立于受试者的压力检测模型。通过融合多种传感器源(EDA、BVP和ST)并设计新的生物信号处理管道和训练方法,该模型在准确性和稳定性方面均优于传统机器学习方法和现有最先进的模型。实验结果表明,多传感器源融合能够显著提高压力检测的准确性,为消费级可穿戴设备的应用提供了有效解决方案。原创 2025-08-28 15:01:25 · 64 阅读 · 0 评论 -
93、主题填字游戏构造与非沉浸式机器人手臂虚拟实验室研究
本研究围绕主题填字游戏构造和非沉浸式机器人手臂虚拟实验室展开。在主题填字游戏构造方面,针对其作为NP难问题的特点,通过推导极限定理和解的数量表达式,结合暴力实现生成谜题,并发现目标函数值分布与正态分布高度拟合。在机器人手臂虚拟实验室方面,基于三菱Melfa RV-2SDB的数学模型和控制方案,利用Unity3D开发非沉浸式虚拟环境,支持用户交互与任务模拟,并通过实验验证其对机器人学习的促进作用。未来研究将聚焦于解的数量表达式的优化、虚拟实验室的功能扩展、交互优化、性能提升及教学评估体系的完善,旨在推动相关领原创 2025-08-27 13:17:46 · 33 阅读 · 0 评论 -
92、知识图谱负采样策略与日语填字游戏构建研究
本研究提出了一种增强型负采样策略 MDNCaching,用于知识图谱的链接预测任务,通过减少潜在正样本的干扰,显著提高了模型性能。同时,研究还探讨了极限定理在日语填字游戏构建中的应用,证明了其在优化NP难问题中的有效性。实验结果表明,MDNCaching 在多个数据集和模型中均优于现有策略,而日语填字游戏相比英语填字游戏具有更高的单词密度和教育应用潜力。这些成果为知识图谱优化和语言教学提供了新的思路和工具。原创 2025-08-26 11:54:10 · 53 阅读 · 0 评论 -
91、知识图谱嵌入中的负采样策略:MDNCaching方法解析
本文提出了一种新的知识图谱嵌入负采样策略MDNCaching,通过结合矩阵分解和缓存技术,生成高质量负例并减少假负例,有效提升知识图谱嵌入的性能。该方法在多个基准数据集上的实验结果表明,其在链接预测和知识图谱补全任务中优于其他常见负采样策略。原创 2025-08-25 15:17:01 · 82 阅读 · 0 评论 -
90、知识表示与推理技术:RDF、ILP及KGE负采样策略研究
本文探讨了知识表示与推理技术的关键方法和应用,包括优先EL本体的演化示例、RDF、Prolog和ILP的基本概念及其比较,以及运输本体的构建与实现。同时,文章聚焦于知识图嵌入中的负采样策略,提出了一种新的MDNCaching方法,通过矩阵分解和动态嵌入空间生成高质量的负例,从而提升KGE模型性能。研究成果在语义网、交通系统和知识图谱补全等领域具有广泛应用潜力,并为未来知识表示与推理技术的发展提供了方向。原创 2025-08-24 11:48:04 · 115 阅读 · 0 评论 -
89、优先EL本体的演化研究
本文探讨了优先EL本体的演化研究,重点分析了如何在保持本体一致性的前提下,将新的信息融入现有本体。文章介绍了EL本体的语法和语义基础,以及描述逻辑的演化过程,并提出了基于冲突矩阵和多维缩放技术的优先EL本体构建方法。此外,文章还详细分析了输入一致和不一致情况下的修订算法,并讨论了该方法在医学领域和知识图谱构建中的实际应用。最终,通过流程图和表格总结了优先EL本体的演化过程,展示了其在本体管理和知识更新中的重要价值。原创 2025-08-23 13:12:36 · 42 阅读 · 0 评论 -
88、循环平稳随机数序列在Tsetlin机中的应用
本文探讨了循环平稳随机数序列在Tsetlin机(TM)中的应用以及优先化EL本体的演化方法。在Tsetlin机部分,研究使用预生成的循环平稳随机数序列和基于LFSR的随机数生成方法,以降低硬件实现的复杂性和功耗,并评估了其对TM性能的影响。实验结果显示,序列长度和分辨率对性能有显著影响,且不同数据集的需求存在差异。此外,文章提出了一种基于可能性理论的优先化EL本体演化方法,结合多项式句法算法以保持本体一致性,适用于医学和经济学等领域的知识更新。研究为Tsetlin机的优化实现和EL本体的动态演化提供了有效的原创 2025-08-22 15:22:49 · 29 阅读 · 0 评论 -
87、高效发现稳定周期模式与Tsetlin机的随机数序列应用
本文探讨了稳定周期频繁模式挖掘与Tsetlin机中随机数序列应用两个主题。首先,介绍了SPP-ECLAT算法,该算法在真实时间数据库中高效地挖掘稳定周期频繁模式,并在运行时间和内存消耗方面优于现有方法。其次,研究了Tsetlin机中使用循环平稳随机数序列作为随机数源的可行性,实验表明其在Binary Iris和Noisy XOR数据集上表现良好,具有与标准实现相当的准确性,同时为硬件实现提供了低功耗和可解释性的解决方案。原创 2025-08-21 13:28:36 · 47 阅读 · 0 评论 -
86、高效发现大列时间数据库中的稳定周期模式
本文介绍了一种高效算法SPP-ECLAT,用于在大型列时间数据库中挖掘稳定周期频繁模式。与传统方法相比,该算法利用深度优先搜索和稳定周期频繁模式的向下闭合属性,显著提高了运行效率并减少了内存消耗。文章还探讨了该技术在市场篮子分析、医疗数据和网络流量等领域的应用前景,并展望了未来可能的研究方向。原创 2025-08-20 15:07:55 · 33 阅读 · 0 评论 -
85、并行高效用项集挖掘:算法设计与性能评估
本文介绍了一种基于Spark的并行高效用项集挖掘(PHUIM)框架,并将其应用于两种高效用项集挖掘算法d2HUP和EFIM。通过合理的数据分区策略和并行计算,显著提升了算法的运行效率,尤其在大规模数据集上表现突出。实验结果表明,该框架在不同数据集和参数设置下均具有良好的性能表现。原创 2025-08-19 13:38:29 · 75 阅读 · 0 评论 -
84、快速加权序列模式挖掘与并行高效用项集挖掘算法解析
本文详细解析了两种数据挖掘领域的关键算法:快速加权序列模式挖掘算法(FWSPM)和并行高效用项集挖掘算法(PHUIM)。FWSPM通过引入新的上界模型RSMW和高效的剪枝策略,显著提高了加权序列模式挖掘的效率和可扩展性,适用于市场趋势分析和医疗记录分析等场景。PHUIM基于Apache Spark平台,采用并行处理策略,有效解决了高效用项集挖掘在大规模数据上的性能瓶颈,适用于电子商务推荐系统和网络流量分析等应用。文章还通过实验评估展示了两种算法的性能优势,并展望了其未来优化和应用方向。原创 2025-08-18 15:52:50 · 48 阅读 · 0 评论 -
83、合成钻石磨粒高度估计与快速加权序列模式挖掘技术探索
本博文探讨了两个领域的关键技术:合成钻石磨粒的高度估计和快速加权序列模式挖掘。在合成钻石磨粒高度估计部分,利用pix2pix模型实现从图像到渐变彩色图像的转换,并通过定义参数和分类策略实现高度估计和异常检测。在快速加权序列模式挖掘部分,提出了剩余序列最大权重(RSMW)作为上界,结合剪枝策略和投影技术提升挖掘效率。两个技术分别在图像处理和数据挖掘领域展现了良好的应用前景,并提出了跨领域融合的展望。原创 2025-08-17 13:09:04 · 41 阅读 · 0 评论 -
82、基于深度学习架构的水稻病害识别与合成钻石高度估计
本文探讨了深度学习技术在水稻病害识别和合成钻石磨粒高度估计中的应用。针对水稻病害识别,研究比较了多种CNN架构,发现DenseNet-121在结合迁移学习和数据增强技术时表现优异,准确率高达99.30%。对于合成钻石磨粒高度估计,基于条件对抗网络的pix2pix方法在单视角图像条件下实现了有效的高度检测。文章展示了深度学习在农业和工业领域的巨大潜力,并讨论了其优势、挑战与未来发展方向。原创 2025-08-16 15:23:56 · 94 阅读 · 0 评论 -
81、单调分类的度量学习与水稻叶病分类的深度学习
本博客探讨了两个研究方向:一是单调分类中的度量学习算法LM 3L,该算法通过优化距离度量提升分类性能,并在k-NN分类器上验证了其有效性;二是基于迁移学习的深度学习方法在水稻叶病分类中的应用,通过扩展CNN架构和引入SVM分类器,实现了更高的识别准确率。研究分别总结了各自领域的技术优势,并提出了未来发展方向。原创 2025-08-15 16:28:14 · 51 阅读 · 0 评论 -
80、优化用户分类与单调分类的距离度量学习
本文探讨了用户分类与单调分类中的距离度量学习方法。在用户分类方面,提出了两种新的聚类质量度量方法(LftOrd 和 VarOrd),并验证了它们在推荐系统中的有效性。在单调分类方面,研究了满足单调约束的距离度量学习问题,并提出了一种新的算法LM3L(大间隔单调度量学习),有效避免了引入错误的单调约束,提高了分类的准确性和鲁棒性。实验结果表明,这些方法在多个公开数据集上均取得了显著的性能提升。原创 2025-08-14 16:24:03 · 37 阅读 · 0 评论 -
79、基于层次聚类树的最优用户分类推荐方法
本文提出了一种基于层次聚类树的最优用户分类推荐方法,通过改进聚类质量度量(如LftOrd和VarOrd),提高推荐系统的性能。文章介绍了凝聚式层次聚类(AHC)和最优聚类选择框架(FOSC),并提出了两种新的聚类质量度量方法。实验结果表明,LftOrd和VarOrd在不同的推荐方法中均展现出优势,特别是在BPR-MF方法中,VarOrd表现突出。原创 2025-08-13 10:32:08 · 49 阅读 · 0 评论 -
78、可修改场景下基于聚类的新型MgLSGDM决策方法解析
本文介绍了一种可修改场景下基于聚类的新型多粒度大规模群体决策(MgLSGDM)方法。该方法支持专家随时加入或退出决策过程,通过偏好关系矩阵表达意见,并利用信息标准化、聚类创建、共识计算以及群体偏好关系聚合等步骤,最终实现方案排序。在电子政务案例中的应用表明,该方法能够高效处理大规模群体决策问题,具有开放辩论、基于群体共识计算、允许不完整偏好关系等优势。此外,还分析了该方法的操作步骤、实际应用注意事项以及未来发展方向,为医疗、教育等其他领域的决策提供了潜在支持。原创 2025-08-12 12:49:36 · 96 阅读 · 0 评论 -
77、大规模数据集的提取式文本摘要与多粒度大规模群体决策方法
本文探讨了大规模数据集下的提取式文本摘要方法与多粒度大规模群体决策方法。提取式文本摘要利用Mini-batch K-Means算法进行聚类,并通过ROUGE指标评估摘要质量,实验基于大规模越南语数据集VNText进行,展示了不同参数设置对摘要长度和评估分数的影响。多粒度群体决策方法则提供了一种灵活的决策框架,支持专家动态参与和基于共识的决策调整。文章还分析了两种方法的优化方向及其在不同领域的应用潜力,并探讨了它们之间的关联与互补性。原创 2025-08-11 09:28:50 · 45 阅读 · 0 评论 -
76、聚类算法与文本摘要提取研究
本研究围绕聚类算法与文本摘要提取展开。首先,通过对比PCKM-Mono与其他四种EM风格聚类算法(包括纯单调聚类、纯约束聚类及经典K-Means)的性能,展示了PCKM-Mono在满足约束与保持聚类质量之间的良好平衡。实验结果显示,PCKM-Mono在ARI指标上具有统计显著优势。随后,研究基于K-Means聚类构建了越南语单文档文本摘要提取模型,采用Mini-batch K-Means处理大规模数据,并在自建越南语数据集上验证了方法的有效性。模型在ROUGE-2和ROUGE-L指标上分别取得15.48%和原创 2025-08-10 10:09:49 · 93 阅读 · 0 评论 -
75、材料化合物生成与聚类方法的创新研究
本文介绍了材料科学和数据挖掘领域的两种创新方法:改进的MatVAE模型用于生成目标化合物,以及结合成对约束和单调性约束的PCKM-Mono聚类算法。改进的MatVAE模型通过损失函数L_corr将潜在空间与目标属性相关联,能高效生成具有高合成可及性分数的化合物,减少实验次数。PCKM-Mono算法首次尝试融合单调性约束与成对约束,在多个实验数据集中表现出优越的聚类性能。该研究为材料开发、生物信息学、金融等领域提供了新的方法支持。原创 2025-08-09 13:17:17 · 49 阅读 · 0 评论 -
74、神经网络训练方法与高性能化合物生成研究
本博客探讨了神经网络训练中的ELM方法与BP方法的对比,以及其在高性能化合物生成中的应用。研究重点包括ELM在学习高度非线性函数中的优势,以及提出的MatVAE模型如何通过引入额外损失函数Lcorr,有效解决传统方法在化合物生成中的外推性和筛选效率问题。结合开放数据与实验数据的训练流程,MatVAE在有限数据下展现出优越的化合物生成能力,为材料开发提供了新的AI驱动方法。原创 2025-08-08 10:54:06 · 33 阅读 · 0 评论 -
73、工业文本评分引擎与密集神经网络训练方法评测
本博客主要评测了工业文本评分引擎和密集神经网络训练方法。在工业文本评分引擎方面,通过构建混合模型(结合Longformer、词汇特征、NER特征和词级注意力模块),显著提高了评分准确性,尤其是在对抗性响应的识别方面表现突出。同时,研究了词级注意力模块的可视化效果及其局限性。在密集神经网络训练方法方面,对比了BP(梯度反向传播)和ELM(极限学习机)两种方法在非线性函数近似任务中的效率和效果,结果显示ELM在训练时间和精度方面均优于BP。研究为未来文本评分系统和神经网络训练方法提供了理论支持和实践指导。原创 2025-08-07 12:31:44 · 48 阅读 · 0 评论 -
72、工业文本评分的混合深度神经网络框架
本文提出了一种用于工业文本评分的混合深度神经网络框架,旨在解决企业年度报告等非学术文本的合规性评分问题。框架结合了神经模型(如LSTM和Longformer)、手工NLP特征和规则词级注意力机制,通过多模态融合模块进行评分。实验结果表明,该框架在处理不同长度的企业文档时表现出色,特别是在长文档上显著优于传统模型。此外,模型具备良好的可扩展性、灵活性和可解释性,可应用于工业合规性检查、金融风险评估等多个领域。原创 2025-08-06 09:00:34 · 58 阅读 · 0 评论 -
71、基于深度学习的需求工件中用例场景检测方法
本文提出了一种基于深度学习的方法,用于从自然语言编写的需求文档中识别用例场景(UCS)语句。通过应用多种机器学习和深度学习模型,包括经典分类器、LSTM变体以及预训练语言模型(如BERT、DistilBERT和ULMFiT),对需求文档中的句子进行分类。实验结果显示,预训练模型在分类任务中表现优异,其中ULMFiT的精度最高,达到95%。文章还公开了一个用于UCS分类的数据集,为未来研究提供支持。原创 2025-08-05 14:30:05 · 85 阅读 · 0 评论 -
70、多层神经网络串行解缠学习与用例场景检测的研究进展
本文探讨了多层神经网络的串行解缠学习方法及其在提高模型泛化性能和可解释性方面的应用,同时研究了用例场景检测的深度学习方法在需求文档自动分析中的效果。实验表明,通过信息控制和参数优化,串行解缠学习能够有效提升神经网络性能;而基于深度学习的用例场景检测方法在英文需求文档中表现优异,为需求分析提供了高效且通用的解决方案。未来研究可探索两种方法的结合及扩展应用领域。原创 2025-08-04 14:59:43 · 40 阅读 · 0 评论 -
69、机器学习在实时热舒适度预测与神经网络学习方法中的应用
本博文探讨了机器学习在实时热舒适度预测和多层神经网络串行解纠缠学习中的应用。通过实验比较了多种多输出分类模型在热舒适度预测中的表现,其中Extra Tree分类模型表现最佳。同时,提出了一种新的神经网络学习方法,将信息最小化、最大化和误差最小化串行处理,以提高模型的泛化性能和可解释性。研究为未来在热舒适度预测和神经网络解纠缠学习方向提供了重要的理论和实践基础。原创 2025-08-03 09:15:44 · 77 阅读 · 0 评论 -
68、绿色拼车问题与机器学习预测室内热舒适度的研究
本文探讨了绿色拼车问题(Green-SARP)与基于机器学习的室内热舒适度预测研究。绿色拼车问题聚焦于替代燃料车辆的路径优化,提出了一个复杂的数学模型,并分析了CPLEX求解器在处理小规模问题上的有效性及面对大规模问题时的局限性,建议采用启发式算法或模型分解作为替代方案。在热舒适度预测方面,研究利用多类多输出分类模型(如Extra Tree)结合室内环境和用户特征,实现了对热舒适度、偏好、可接受性和感觉的同时预测,准确率达到68%。文章总结了两个研究方向的挑战与改进策略,并展望了其在资源优化与环境可持续发展原创 2025-08-02 14:42:20 · 37 阅读 · 0 评论 -
67、港口与交通领域的AI及绿色出行问题研究
本文探讨了人工智能在港口物流中的应用以及绿色共享出行问题的研究进展。重点介绍了TEBETS项目如何利用AI和数字孪生技术提升港口区域的安全与效率,并详细分析了Green-SARP模型及其在减少碳排放方面的应用。同时,文章总结了共享出行问题(SARP)的发展历程及绿色交通领域的相关研究,探讨了当前面临的挑战及未来发展方向,包括责任认定、加油基础设施建设以及AI应对复杂情况的能力提升等。原创 2025-08-01 15:54:16 · 57 阅读 · 0 评论 -
66、港口区域人工智能技术应用的研究与模拟
本文探讨了人工智能技术在港口区域运营中的应用,重点介绍了TEBETS技术演示器的构建与数据收集过程,并通过系统动力学、离散事件和基于代理的模拟方法对港口作业流程进行建模分析。文章还提出了性能指标评估、瓶颈识别及优化策略,包括资源分配、存储管理和交通优化。同时,展望了港口未来的发展趋势,包括智能化升级、绿色环保和多式联运融合,旨在提升港口运营效率和竞争力。原创 2025-07-31 10:47:52 · 41 阅读 · 0 评论 -
65、可解释在线车道变更预测与港口区域人工智能技术应用
本文探讨了可解释在线车道变更预测和港口区域人工智能技术应用的相关研究与实践。在车道变更预测领域,通过研发层相关传播(LRP)方法,提高了层归一化LSTM模型决策过程的透明性,并讨论了未来多模态通信和用户交互改进模型的方向。在港口区域应用方面,TEBETS项目展示了人工智能与模拟技术的结合,利用微软Project Bonsai、AnyLogic和Optimize等工具,实现了智能监控系统的设计与自动化等级的探索。总结指出,这些技术在交通和港口领域具有广阔的发展前景,未来需在数据处理、自动化和技术集成方面持续优原创 2025-07-30 12:13:32 · 43 阅读 · 0 评论 -
64、数字孪生环境下可解释的在线车道变更预测
本文探讨了在数字孪生环境下,利用层归一化LSTM进行在线车道变更预测,并结合逐层相关性传播(LRP)方法提高预测模型决策的可解释性。通过实时采集Providentia++数字孪生系统的数据,模型能够准确预测车辆在未来2.5秒内的车道变更行为,并通过LRP-Ω规则解释影响预测的关键因素。研究涵盖了模型方法、原型架构设计、解释评估以及用户界面交互展示,同时讨论了该技术在智能交通系统、自动驾驶和保险行业等领域的应用潜力。原创 2025-07-29 16:57:56 · 48 阅读 · 0 评论 -
63、交通聚类与车道变更预测技术解析
本文详细解析了智能交通领域的两项关键技术:基于HNSW的两阶段交通聚类算法TSST-HDBC,以及利用层归一化LSTM和逐层相关性传播(LRP)实现可解释的在线车道变更预测方法。TSST-HDBC算法通过时空维度分析和层次化聚类,提升了交通轨迹数据聚类的准确性与实用性;而可解释的车道变更预测方法则在智能驾驶中实现了预测结果的透明化,提高了系统可信度。文章还分析了两种技术的优势、应用场景及未来发展方向,并通过实验和对比展示了其优越性能。原创 2025-07-28 15:46:55 · 82 阅读 · 0 评论 -
62、基于图像与轨迹数据的环境分析方法研究
本文介绍了两种基于图像与轨迹数据的环境分析方法。一种利用图像数据结合预训练模型和模糊融合技术预测PM2.5水平,另一种采用基于HNSW结构的两阶段交通聚类算法分析城市交通流量。两种方法分别从环境保护和城市交通规划的角度提供了创新解决方案,并通过多个数据集验证了其有效性。未来研究将扩展数据来源、结合先进技术并进行实际应用测试,以推动城市可持续发展。原创 2025-07-27 11:47:40 · 38 阅读 · 0 评论 -
61、越南多类别情感分析与交通空气污染关联研究
本博文探讨了两项重要的研究成果:一是越南多类别情感分析,通过多种单个模型和集成模型的比较,提出了性能优越的集成网络;二是交通因素与空气污染关联研究,提出了一种新颖的框架来挖掘交通因素与空气污染之间的隐藏关联,以实现PM2.5水平的估计与预测。这两项研究在自然语言处理和智能交通系统领域具有重要的理论和实际意义。原创 2025-07-26 15:47:04 · 36 阅读 · 0 评论 -
60、越南语客户评论多分类情感分析
本文聚焦于越南语客户评论的多分类情感分析,利用大规模数据集(包含480,702条评论)进行深度学习模型研究。采用了TextCNN、Bi-LSTM、Bi-GRU以及混合模型(如Bi-LSTM + CNN)等五种深度学习模型,并尝试了五种集成方法(如均匀加权、注意力网络、门控网络、SE网络等)以提升性能。实验结果显示,注意力网络在F1分数上达到73.64%,表现最佳。研究还指出了集成方法的优势与改进空间,为未来情感分析技术的发展提供了参考方向。原创 2025-07-25 16:11:18 · 74 阅读 · 0 评论 -
59、C&C - GCN:融合内容与上下文的假新闻检测新方法
本文提出了一种基于内容与上下文融合的假新闻检测方法——C&C - GCN。该方法通过整合新闻内容和社会上下文信息,构建C&C图,并利用图卷积网络和CNN模型提取特征并进行分类。实验结果表明,C&C - GCN在检测假新闻方面优于传统方法,具有较高的准确性和广泛的应用前景,适用于社交媒体平台、新闻媒体机构和政府监管部门等场景。原创 2025-07-24 13:29:37 · 46 阅读 · 0 评论 -
58、形式化建模、安全分析与虚假新闻检测
本博客探讨了使用BIP建模语言设计客户端-服务器通信系统,并通过SMC-BIP进行安全威胁分析,覆盖STRIDE模型中的各类安全问题,如欺骗、篡改、抵赖等。此外,博客还介绍了一种新的虚假新闻检测方法——C&C-GCN,该方法结合内容与上下文信息,利用图卷积网络提升检测准确性,为社交网络中的信息真实性保障提供了新思路。原创 2025-07-23 15:43:42 · 34 阅读 · 0 评论 -
57、Java2CSP调试工具与可互操作系统的安全分析
本文介绍了Java2CSP调试工具及其在调试、测试和系统监控中的应用,并深入探讨了基于BIP建模的可互操作系统安全分析方法。通过初始评估展示了Java2CSP在小型程序中的诊断能力,同时结合STRIDE威胁模型对物联网系统进行攻击场景建模、威胁入口点识别和安全属性验证,为保障现代可互操作系统安全性提供了理论支持与实践指导。原创 2025-07-22 15:36:06 · 39 阅读 · 0 评论
分享