【矩阵乘法】Fibonacci 第 n 项

本文介绍了一个使用矩阵快速幂算法求解特定矩阵问题的程序,输入矩阵经过n-2次递归操作后,输出特定位置的值,结果对m取模。
摘要由CSDN通过智能技术生成
题目描述

输入

输入n,m。

输出

样例输入 复制
5 1000
样例输出 复制
5
数据范围限制

这题的代码:

 

​
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int n,m;
struct node
{
	ll a[101][101];
}p,g;
void init(node &x)
{
	for(int i=1;i<=2;i++)
	for(int j=1;j<=2;j++)
	{
		if(i==j)
		x.a[i][j]=1;
		else
		x.a[i][j]=0;
	}
}
void mul(node &x,node &y,node &t)
{
	memset(t.a,0,sizeof(t.a));
	for(int i=1;i<=2;i++)
	for(int j=1;j<=2;j++)
	for(int k=1;k<=2;k++)
	{
		t.a[i][j]+=x.a[i][k]*y.a[k][j];
		t.a[i][j]%=m;
	}
}
void ksm(int k)
{
	init(g);
	node t,ff=p;
	while(k)
	{
		if(k%2)
		mul(g,ff,t),g=t;
		mul(ff,ff,t),ff=t;
		k/=2;
	}
}
int main()
{
	int i,j,k;
	scanf("%d%d",&n,&m);
	p.a[1][1]=1;
	p.a[1][2]=1;
	p.a[2][1]=1;
	p.a[2][2]=0;
	if(n<=2)
	printf("1\n");
	else
	{
		ksm(n-2);
		ll ans=(g.a[1][1]%m+(g.a[1][2]%m))%m;
		printf("%lld",ans);
	}
}

​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值