技术背景介绍
随着AI聊天助手的广泛应用,如何让AI具备长程记忆从而提供更加个性化的用户体验成为了一个重要的研发方向。Zep是为AI助手应用设计的长程记忆服务,它能够记录并回忆过去的对话,降低幻觉现象,减少延迟并节约成本。
核心原理解析
Zep的核心功能在于其强大的会话历史记录和检索能力。通过Zep,AI助手可以存储并检索用户的历史对话并在需要时进行回溯。这一能力建立在Zep的长程记忆存储以及矢量搜索技术之上,确保了在海量数据中快速找到相关信息。
代码实现演示
下面我们将通过Python代码展示如何使用Zep来管理和检索会话历史:
import getpass
import time
from uuid import uuid4
from langchain.memory import ZepMemory
from langchain_core.messages import AIMessage, HumanMessage
from langchain_community.retrievers.zep import SearchScope, SearchType, ZepRetriever
# 设置Zep服务器的URL
ZEP_API_URL = "http://localhost:8000"
# 用户认证可选步骤
AUTHENTICATE = False
zep_api_key = None
if AUTHENTICATE:
zep_api_key = getpass.getpass()
session_id = str(uuid4()) # 为用户会话生成唯一ID
# 初始化Zep内存类
zep_memory = ZepMemory(session_id=session_id, url=ZEP_API_URL, api_key=zep_api_key)
# 示例对话历史
test_history = [
{"role": "human", "content": "Who was Octavia Butler?"},
{"role": "ai", "content": "Octavia Estelle Butler (June 22, 1947 – February 24, 2006) was an American science fiction author."},
# 继续添加更多对话数据...
]
# 添加对话历史至Zep存储
for msg in test_history:
zep_memory.chat_memory.add_message(
HumanMessage(content=msg["content"]) if msg["role"] == "human" else AIMessage(content=msg["content"])
)
time.sleep(10) # 等待消息处理和嵌入
# 使用Zep检索器进行矢量搜索
zep_retriever = ZepRetriever(
session_id=session_id,
url=ZEP_API_URL,
top_k=5,
api_key=zep_api_key,
)
# 异步调用示例
result = await zep_retriever.ainvoke("Who wrote Parable of the Sower?")
print(result)
应用场景分析
Zep的强大功能可以应用于任何需要持久和动态用户交互的场景,例如智能客服、个性化学习助手、用户行为分析等场景。在这些应用中,AI需要能理解并记住用户的偏好和历史交互,以便提供更精准的回答和建议。
实践建议
- 优化延迟:确保您使用的是最靠近的API服务来降低网络延迟。
- 存储管理:定期检查和清理不再需要的对话历史以优化存储和检索性能。
- 数据保护:在处理用户数据时,务必遵循数据保护法规和隐私政策。
如果遇到问题欢迎在评论区交流。
—END—