CSP-J模拟赛4补题报告

1.分数

T1AC,T2AC,T3  20分,T4  10分。

2.赛后反思

T1直接O(n)模拟过(差点忘了取模)

T2用桶数组计数+递推

T3用前缀异或和,四层循环暴力枚举所有矩阵得了20分,正解压维+2进制拆分(消耗了较多时间)

T4纯暴力得10分,正解不会

3.题解

---------------------------------------------------------T1  three-----------------------------------------------------------
题意

三种微生物,A种微生物每一秒会繁殖出1个A类微生物,1个 B 类微生物,1个C类微生物;B类微生物每一秒会繁殖出2个A类微生物,2个C类微生物;C类微生物每一秒会繁殖出1个A类微生物,1个B类微生物。所有的微生物都不会死亡,一开始A,B,C三种微生物各1个,问n秒后A,B,C三种微生物有奇数个还是偶数个。

思路

这道题直接O(n)模拟三种微生物繁殖的过程,然后判断奇偶,要注意微生物繁殖特别快,n<=1e6,很容易爆long long, 所以要取模。

AC代码
#include<bits/stdc++.h>
using namespace std;
int n;
long long a=1,b=1,c=1,al,bl,cl;
int main(){
	//freopen("three.in","r",stdin);
	//freopen("three.out","w",stdout);
	scanf("%d",&n);
	for(int i=1;i<=n;++i){
		a%=4;//不取模会爆long long
		b%=4;
		c%=4;
		al=a;
		bl=b;
		cl=c;
		a+=(al+2*bl+cl);
		b+=(al+cl);
		c+=(al+2*bl);
	}
	if(a%2==1) cout<<"odd\n";
	else cout<<"even\n";
	if(b%2==1) cout<<"odd\n";
	else cout<<"even\n";
	if(c%2==1) cout<<"odd\n";
	else cout<<"even\n";
	return 0;
}
-----------------------------------------------------------T2  fit--------------------------------------------------------------
题意

有n个大小在1∼m中的整数,并且你可以将两个相同的数字合并成一个比原数字大一的数字,现在有 q次询问,每次询问给你一个整数x,问你这n个整数最多能得到多少个整数x?

思路

使用桶数组记录每个数字的个数,然后从小到大递推每个数最多能合成多少个

AC代码
#include<bits/stdc++.h>
using namespace std;
int n,m,q,a,t[1000003]={0},x[1000003];
int main(){
	//freopen("fit.in","r",stdin);
	//freopen("fit.out","w",stdout);
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++){
		scanf("%d",&a);
		t[a]+=1;//桶数组计数
	}
	scanf("%d",&q);
	for(int i=1;i<=q;i++){
		scanf("%d",&x[i]);
	}
	for(int i=2;i<=m;i++){
		t[i]=t[i-1]/2+t[i];//递推求最多能合成多少个i
	}
	for(int i=1;i<=q;i++){
		printf("%d\n",t[x[i]]);
	}
	return 0;
}
-------------------------------------------------------T3  matrix-----------------------------------------------------------
题意

有一个n*m的矩阵,每个格子有一个整数,定义一个子矩阵的快乐值所有元素的异或和,问你该矩阵所有子矩阵的快乐值之和为多少?

思路

四层循环枚举所有子矩阵太暴力,先枚举子矩阵上下界,再将子矩阵压成一维,求出前缀异或和,

再使用二进制拆分,按位枚举每一位的异或和。

AC代码
​
#include<bits/stdc++.h>
using namespace std;
int n,m,a[305][305],b[305],sum[305];
long long ans=0;
int main(){
//	freopen("matrix.in","r",stdin);
//	freopen("matrix.out","w",stdout);
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			scanf("%d",&a[i][j]);
		}
	}
	for(int u=1;u<=n;u++){//枚举子矩阵上界
		memset(b,0,sizeof(b));//清空b数组
		for(int d=u;d<=n;d++){//枚举子矩阵下界
			for(int j=1;j<=m;j++){
				b[j]^=a[d][j];
				sum[j]=sum[j-1]^b[j];//求前缀异或和
			}
			for(int p=0;p<10;p++){//按位枚举
				long long cnt[2]={1,0};//记录1和0的个数
				for(int j=1;j<=m;j++){
					int t=(sum[j]>>p)&1;
					ans+=(1<<p)*cnt[t^1];
					cnt[t]++;
				}
			}
		}
	} 
	printf("%lld",ans);
	return 0;
}

​
----------------------------------------------------------T4 pair-------------------------------------------------------------
题意

有一个长度为n的数列a,一个长度为m的数列b,给你一个正整数p,让你生成一个长n*m的数列c。满足c[(i-1)*m+j]=(a[i]+b[j])%p。问c中有多少个数对满足i<j且c[i]>c[j]。

思路

看着十分杂乱,实际上就是让你将a和b转化为一个二维数组,形似

然后转化成一个一维数组,取模p,求出有多少个逆序对,可以记录之前所有数字的出现次数,统计逆序对。

AC代码
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+5;
int n,m,p,a[N],b[N];
long long cntb[11],res[11],vis[11];
void write(__int128 x){
	if(x>9) write(x/10);
	putchar(char(x%10+'0'));
}
int main(){
	cin>>n>>m>>p;
	for(int i=1;i<=n;i++){
		cin>>a[i];
	}
	for(int i=1;i<=m;i++){
		cin>>b[i];
		cntb[b[i]]++;
	}
	for(int k=0;k<p;k++){
		memset(vis,0,sizeof(vis));
		for(int i=1;i<=m;i++){
			for(int j=b[i]+1;j<p;j++){
				res[k]+=vis[j];
			}
			vis[b[i]]++;
			b[i]=(b[i]+1)%p;
		}
	}
	__int128 ans=0;
	memset(vis,0,sizeof(vis));
	for(int i=1;i<=n;i++){
		ans+=res[a[i]];
		for(int k=0;k<p;k++){
			for(int j=(a[i]+k)%p+1;j<p;j++){
				ans+=cntb[k]*vis[j];
			}
		}
		for(int k=0;k<p;k++){
			vis[(a[i]+k)%p]+=cntb[k];
		}
	}
	write(ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值