1.分数
T1AC,T2AC,T3 20分,T4 10分。
2.赛后反思
T1直接O(n)模拟过(差点忘了取模)
T2用桶数组计数+递推过
T3用前缀异或和,四层循环暴力枚举所有矩阵得了20分,正解压维+2进制拆分(消耗了较多时间)
T4纯暴力得10分,正解不会
3.题解
---------------------------------------------------------T1 three-----------------------------------------------------------
题意
有三种微生物,A种微生物每一秒会繁殖出1个A类微生物,1个 B 类微生物,1个C类微生物;B类微生物每一秒会繁殖出2个A类微生物,2个C类微生物;C类微生物每一秒会繁殖出1个A类微生物,1个B类微生物。所有的微生物都不会死亡,一开始A,B,C三种微生物各1个,问n秒后A,B,C三种微生物有奇数个还是偶数个。
思路
这道题直接O(n)模拟三种微生物繁殖的过程,然后判断奇偶,要注意微生物繁殖特别快,n<=1e6,很容易爆long long, 所以要取模。
AC代码
#include<bits/stdc++.h>
using namespace std;
int n;
long long a=1,b=1,c=1,al,bl,cl;
int main(){
//freopen("three.in","r",stdin);
//freopen("three.out","w",stdout);
scanf("%d",&n);
for(int i=1;i<=n;++i){
a%=4;//不取模会爆long long
b%=4;
c%=4;
al=a;
bl=b;
cl=c;
a+=(al+2*bl+cl);
b+=(al+cl);
c+=(al+2*bl);
}
if(a%2==1) cout<<"odd\n";
else cout<<"even\n";
if(b%2==1) cout<<"odd\n";
else cout<<"even\n";
if(c%2==1) cout<<"odd\n";
else cout<<"even\n";
return 0;
}
-----------------------------------------------------------T2 fit--------------------------------------------------------------
题意
有n个大小在1∼m中的整数,并且你可以将两个相同的数字合并成一个比原数字大一的数字,现在有 q次询问,每次询问给你一个整数x,问你这n个整数最多能得到多少个整数x?
思路
使用桶数组记录每个数字的个数,然后从小到大递推每个数最多能合成多少个
AC代码
#include<bits/stdc++.h>
using namespace std;
int n,m,q,a,t[1000003]={0},x[1000003];
int main(){
//freopen("fit.in","r",stdin);
//freopen("fit.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d",&a);
t[a]+=1;//桶数组计数
}
scanf("%d",&q);
for(int i=1;i<=q;i++){
scanf("%d",&x[i]);
}
for(int i=2;i<=m;i++){
t[i]=t[i-1]/2+t[i];//递推求最多能合成多少个i
}
for(int i=1;i<=q;i++){
printf("%d\n",t[x[i]]);
}
return 0;
}
-------------------------------------------------------T3 matrix-----------------------------------------------------------
题意
有一个n*m的矩阵,每个格子有一个整数,定义一个子矩阵的快乐值为所有元素的异或和,问你该矩阵所有子矩阵的快乐值之和为多少?
思路
四层循环枚举所有子矩阵太暴力,先枚举子矩阵上下界,再将子矩阵压成一维,求出前缀异或和,
再使用二进制拆分,按位枚举每一位的异或和。
AC代码
#include<bits/stdc++.h>
using namespace std;
int n,m,a[305][305],b[305],sum[305];
long long ans=0;
int main(){
// freopen("matrix.in","r",stdin);
// freopen("matrix.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
scanf("%d",&a[i][j]);
}
}
for(int u=1;u<=n;u++){//枚举子矩阵上界
memset(b,0,sizeof(b));//清空b数组
for(int d=u;d<=n;d++){//枚举子矩阵下界
for(int j=1;j<=m;j++){
b[j]^=a[d][j];
sum[j]=sum[j-1]^b[j];//求前缀异或和
}
for(int p=0;p<10;p++){//按位枚举
long long cnt[2]={1,0};//记录1和0的个数
for(int j=1;j<=m;j++){
int t=(sum[j]>>p)&1;
ans+=(1<<p)*cnt[t^1];
cnt[t]++;
}
}
}
}
printf("%lld",ans);
return 0;
}
----------------------------------------------------------T4 pair-------------------------------------------------------------
题意
有一个长度为n的数列a,一个长度为m的数列b,给你一个正整数p,让你生成一个长n*m的数列c。满足c[(i-1)*m+j]=(a[i]+b[j])%p。问c中有多少个数对满足i<j且c[i]>c[j]。
思路
看着十分杂乱,实际上就是让你将a和b转化为一个二维数组,形似
然后转化成一个一维数组,取模p,求出有多少个逆序对,可以记录之前所有数字的出现次数,统计逆序对。
AC代码
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+5;
int n,m,p,a[N],b[N];
long long cntb[11],res[11],vis[11];
void write(__int128 x){
if(x>9) write(x/10);
putchar(char(x%10+'0'));
}
int main(){
cin>>n>>m>>p;
for(int i=1;i<=n;i++){
cin>>a[i];
}
for(int i=1;i<=m;i++){
cin>>b[i];
cntb[b[i]]++;
}
for(int k=0;k<p;k++){
memset(vis,0,sizeof(vis));
for(int i=1;i<=m;i++){
for(int j=b[i]+1;j<p;j++){
res[k]+=vis[j];
}
vis[b[i]]++;
b[i]=(b[i]+1)%p;
}
}
__int128 ans=0;
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++){
ans+=res[a[i]];
for(int k=0;k<p;k++){
for(int j=(a[i]+k)%p+1;j<p;j++){
ans+=cntb[k]*vis[j];
}
}
for(int k=0;k<p;k++){
vis[(a[i]+k)%p]+=cntb[k];
}
}
write(ans);
return 0;
}