比较深度学习和支持向量机的自动垃圾分类
摘要:垃圾分类是将垃圾分类成不同类型的过程。目前的趋势是有效地对垃圾进行分类,以便适当地处理。必须尽早进行分离,以减少其他物质对废物的污染。这一过程自动化的需要对垃圾处理公司来说是一个重要的促进因素。本研究旨在通过应用机器学习技术,仅从垃圾图片中识别垃圾类型,实现垃圾分类的自动化。使用了两种流行的学习算法:卷积神经网络(CNN)深度学习和支持向量机(SVM)。每种算法都创建了不同的分类器,利用256 x 256彩色png图像将废物分为3大类:塑料、纸张和金属。比较了两种分类器的准确率,以选出最佳分类器并在树莓派3上实现。pi控制一个机械系统,引导废物从其初始位置进入相应的容器。然而,在本文中,我们只比较了两种机器学习技术,并在pi上实现了最佳模型,以衡量其分类速度。支持向量机的分类准确率达到94.8%,而CNN仅达到83%。支持向量机对不同类型的垃圾也表现出了特殊的适应性。CNN使用NVIDIA DIGITS进行训练,SVM使用Matlab 2016a进行训练。SVM模型最终在树莓派3上实现,它产生了快速分类,平均每张图像0.1s。
1.说明
垃圾分类在家庭级别[1]变得特别重要。目前的趋势是有效地对垃圾进行分类,以便适当地处理。把废物流中不同的元素分开,可回收有用的物料,从而减少运往堆填区的大量物料,并使可循环再造的物料可运往目的地。公司还对材料进行分类和回收,以提取价值[1]。因此,对智能垃圾分类的需求越来越大。从另一个角度来看,计算技术正在发展,日常使用的小工具正变得更加智能。凭借其计算能力,它们可以被整合到一个环保高效的垃圾分类系统中。
垃圾的产生在最近一段时间急剧增加。如果不妥善处理,它们会对环境产生有害影响。垃圾分类应尽早完成,以最大限度地增加可回收物品的数量,减少被其他物品污染的可能性。让垃圾桶更智能有助于解决这一问题,无论是在家庭还是大型场合,都可以自动进行垃圾分类。在本研究中,我们旨在通过比较两个非常流行的分类器CNN和SVM来创建这样一个设备。该分类器显示了更好的准确性,实现了自动垃圾分类。结果就是一个树莓派控制的垃圾桶。智能垃圾桶会拍下垃圾的照片,然后自动识别出垃圾的类型,并将其重定向到相应的容器中。第二部分包含了一个类似的技术审查,第三部分介绍了数据收集过程和预处理,第四部分简要介绍了CNN和方框图描述了训练阶段和使用的网络体系结构,第五部分简要介绍支持向量机和使用的技术培训,第六部分比较两种模型的精度,第七部分展示了我们的模型的实现在覆盆子π和描述了分类过程,最后对本文的工作进行了总结,并对研究结果、不足和未来的工作进行了总结。
2.背景
卷积神经网络[3]对模式识别[4]产生了很大的影响。在CNN时代之前,特征是人工挑选和设计的,然后由分类器跟踪。CNN革命性的一点是,特征大多是从训练数据中自动学习的。CNN的架构使其在图像识别方面特别强大。特别是卷积操作捕捉图像的二维性质。此外,滑动内核的使用有助于减少通过权值共享来学习的参数数量。CNN已经在商业上使用了20多年[5],CNN的使用在最近几年呈爆炸式增长,因为最近的两个发展。首先,大型标记数据集,如大规模视觉识别挑战(ILSVRC)[6]已经可以用于训练和验证。其次,CNN学习算法已经在大规模并行图形处理单元(gpu)上实现,加速了学习和推理。CNN的完整描述可以在第四部分找到。
另一方面,SVM在许多应用中显示了最先进的准确性,从医疗[7]到环境[8]到许多其他应用。简而言之,支持向量机是一种最小风险分类器。支持向量机总是通过在两类之间留下尽可能大的距离来找到分离数据的平面。最近,支持向量机与卷积神经网络相结合,以便更好地进行预测。支持向量机最近也与大量用于图像识别的特征技术[9]捆绑在一起。第五节简要介绍了支持向量机和特征包技术。
垃圾自动分类一直是许多研究的课题。最近的一项研究使用OWL本体对垃圾[10]进行分类。然而,排序的元素需要配备RFID,以确保排序的准确性。另一种方法是使用光学传感器[11]来区分纹理和颜色。然而,光学传感器比Pi相机更昂贵,而且需要手工制作才能进行分类。