[网络流24题]T1 飞行员配对方案问题

呣唔,很水的一道二分图最大匹配

裸奔一个匈牙利算法就能过,然而太久没写忘记了,下次补上。

为什么不用dinic呢→_→

简单好写效率高

超级源点s连外籍士兵,流量为1;

外籍士兵连可行的英国士兵,流量为1;

英国士兵连超级汇点t,流量为1。

跑dinic就行了。。么???

woc!!要输出最好的方案。。

然而我不会写。。。而且似乎最好方案不止一种。。不知道是SpecialJudge还是什么。。

总之我写不来T_T。。


代码:网络流

#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define g getchar()
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
inline ll read(){
	ll x=0,f=1;char ch=g;
	for(;ch<'0'||ch>'9';ch=g)if(ch=='-')f=-1;
	for(;ch>='0'&&ch<='9';ch=g)x=x*10+ch-'0';
	return x*f;
}
inline void out(ll x){
	int a[25],wei=0;
	if(x<0)putchar('-'),x=-x;
	for(;x;x/=10)a[++wei]=x%10;
	if(wei==0){puts("0");return;}
	for(int j=wei;j>=1;--j)putchar('0'+a[j]);
	putchar('\n');
}
struct re{int v,w,next;}ed[20001];
int dui[501],dep[501],head[501],t,n,m,ans,e=1,x,y;
void ins(int x,int y,int w){
	ed[++e]=(re){y,w,head[x]};head[x]=e;
	ed[++e]=(re){x,0,head[y]};head[y]=e;
}
bool bfs(){
	int tou=1,wei=1;
	dui[tou]=0;
	memset(dep,-1,sizeof(dep));
	dep[0]=0;
	for(;tou<=wei;++tou){
		int u=dui[tou];
		for(int i=head[u];i;i=ed[i].next){
			if(ed[i].w&&dep[ed[i].v]==-1){
				dep[ed[i].v]=dep[u]+1;
				dui[++wei]=ed[i].v;
			}
		}
	}
	return dep[t]!=-1;
}
int dfs(int x,int w){
	if(x==t)return w;
	int used=0;
	for(int i=head[x];i;i=ed[i].next){
		int v=ed[i].v;
		if(ed[i].w&&dep[v]==dep[x]+1){
			int left=w-used;
			left=dfs(v,min(ed[i].w,left));
			used+=left;
			ed[i].w-=left;
			ed[i^1].w+=left;
			if(used==w)return w;
			
		}
	}
	if(!used)dep[x]=-1;
	return used;
}
void dinic(){
	while(bfs())ans+=dfs(0,inf);
}
int main(){
	freopen("air10.in","r",stdin);
//	freopen("","w",stdout);
	m=read();n=read();
	for(;scanf("%d%d",&x,&y)==2&&x!=-1;){
		ins(x,y,1);
	}
	t=n+m+1;
	for(int i=1;i<=m;++i)ins(0,i,1);
	for(int i=m+1;i<t;++i)ins(i,t,1);
	dinic();
	out(ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值