有源汇有上下界最小流 DInic + 各种优化 模板

例题:loj117 : https://loj.ac/problem/117

//其实就是判断可行流后倒着求一遍最大流




#include <iostream> #include <cstring> #include <cstdio> #include <queue> #define mem(a,b) memset(a,b,sizeof(a)) using namespace std; const int maxn = 200010, INF = 0x7fffffff; int d[maxn], head[maxn], in[maxn], cur[maxn]; int n, m, s, t; int cnt = 0; struct node{ int u, v, c, next, bz; }Node[2*maxn]; inline void add_(int u, int v, int c, int bz) { Node[cnt].u = u; Node[cnt].v = v; Node[cnt].c = c; Node[cnt].next = head[u]; Node[cnt].bz = bz; head[u] = cnt++; } inline void add(int u, int v, int c, int bz) { add_(u,v,c,bz); add_(v,u,0,bz); } inline bool bfs() //此处为bool类型 其它类型会TL { queue<int> Q; mem(d,0); Q.push(s); d[s] = 1; while(!Q.empty()) { int u = Q.front(); Q.pop(); for(int i=head[u]; i!=-1; i=Node[i].next) { node e = Node[i]; if(!d[e.v] && e.c > 0) { d[e.v] = d[e.u] + 1; Q.push(e.v); if(e.v == t) return 1; } } } return d[t] != 0; } inline int dfs(int u, int cap) { int ret = 0, V; if( u == t || cap == 0) return cap; for(int &i=cur[u]; i!=-1; i=Node[i].next) //千万不要忘记加引用符号 { node e = Node[i]; if(d[e.v] == d[e.u] + 1 && e.c > 0) { int V = dfs(e.v, min(cap, e.c)); Node[i].c -= V; Node[i^1].c += V; ret += V; cap -= V; if(cap == 0) break; } } if(cap > 0) d[u] = -1; return ret; } inline int Dinic(int u) { int ans = 0; while(bfs()) { memcpy(cur,head,sizeof(head)); ans += dfs(u, INF); } return ans; } int main() { mem(head,-1); int s_, t_; scanf("%d%d%d%d",&n,&m,&s_,&t_); s = 0; t = n+1; int sum = 0; for(int i=0; i<m; i++) { int u, v, b, d; scanf("%d%d%d%d",&u,&v,&b,&d); add(u, v, d-b,1); in[v] += b; in[u] -= b; } for(int i=1; i<=n; i++) { if(in[i] > 0) { sum += in[i]; add(s,i,in[i],0); } else { add(i,t,-in[i],0); } } add(t_,s_,INF,0); if(sum != Dinic(s)) { printf("please go home to sleep\n"); } else { sum = Node[head[t_]^1].c; for(int i=0; i<cnt; i++) { if(!Node[i].bz) Node[i].v = 0; } head[s] = head[t] = -1; s = t_; t = s_; printf("%d\n",sum - Dinic(s)); //sum 减去 反向最大流 = 正向最小流 } return 0; }

 

转载于:https://www.cnblogs.com/WTSRUVF/p/9199143.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值