- 博客(11)
- 收藏
- 关注
原创 随机梯度下降
代码 import random import dataset import matplotlib.pyplot as plt xs, ys = dataset.get_beans(100) plt.title(“Size-Toxicity Function”, fontsize=12) plt.xlabel(“Size”) plt.ylabel(“Toxicity”) plt.scatter(xs, ys) w = 0.1 y_pre = w * xs plt.plot(xs, y_pre) plt.sh
2021-11-12 09:47:15 223
原创 Actor Critic Method
import gym, os from itertools import count import paddle import paddle.nn as nn import paddle.optimizer as optim import paddle.nn.functional as F from paddle.distribution import Categorical print(paddle.__version__) device = paddle.get_device() env = gym
2021-10-21 16:35:26 85
原创 通过极简方案快速构建手写数字识别模型
通过极简方案快速构建手写数字识别模型 import paddle from paddle.nn import Linear import paddle.nn.functional as F import os import numpy as np import matplotlib.pyplot as plt train_dataset = paddle.vision.datasets.MNIST(mode='train') train_data0 = np.array(train_dataset[0]
2021-10-19 19:48:38 141
原创 paddlepaddle卷积神经网络作业
#paddlepaddle卷积神经网络作业 import paddle import paddle.nn.functional as F from paddle.vision.transforms import ToTensor import numpy as np import matplotlib.pyplot as plt print(paddle.__version__) transform = ToTensor() cifar10_train = paddle.vision.datasets.
2021-10-15 22:03:10 131
原创 2021-10-04
天气预测 # 定义第一天的初始概率 start_probability = {'Rainy': 0.6, 'Sunny': 0.4} # 定义天气转化的概率 transition_probability = { 'Rainy': {'Rainy': 0.7, 'Sunny': 0.3}, 'Sunny': {'Rainy': 0.4, 'Sunny': 0.6}, } # 定义在不同天气下进行不同工作的概率 emission_probability = { 'Rainy': {'w
2021-10-04 22:28:22 59
原创 2021-09-10
神经网络算法 import numpy as np def andActivator(x): if x > 0: return 1 else: return 0 class ganzhiji(object): def __init__(self, x): self.x = x self.w = np.random.rand(2, 1) self.b = np.random.rand(1, 1
2021-09-10 23:10:38 60
原创 机器学习-监督学习 房价预测问题
机器学习-监督学习 房价预测问题``` from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error import numpy as np X_size = [2104, 1600, 2400, 1416, 3000] X_room = [3, 3, 3, 2, 4] X_train = np.array(X_size + X_room).reshape((len(X_si
2021-09-03 22:39:18 340
转载 第一次作业
第一次作业数组拆分垂直拆分:numpy.vsplit(数组,份数)->(数组片段)水平拆分:numpy.hsplit(数组,份数)->(数组片段)numpy.dsplit(数组,份数)->(数组片段)numpy基本加减和取行操作矩阵删除、插入、尾部添加操作(delete,insert,append)delete()函数insert()函数append()函数np.random.choice(a, size, replace, p)星号(*)的作用拉平操作 ravel()和faltten()
2021-09-03 16:04:00 80
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人