骨赘检测与纤维方向估计:医学影像的智能分析
在医学影像分析领域,骨赘检测和纤维方向估计是两项重要的研究内容,它们对于骨关节炎(OA)的诊断和人类大脑连接性的研究具有关键意义。下面将详细介绍相关的研究方法和实验结果。
骨赘检测用于 OA 诊断
- 数据处理
- 形状模型训练 :通过对部分数据的预实验选择点,在这些点上训练形状模型,模型具有 98%的变化,相当于 22 个形状模式。
- 纹理分析 :不直接寻找骨轮廓,而是在骨赘出现的区域对图像纹理进行分类器训练。定义四个感兴趣区域(ROIs),使用来自基础 RFCLM 对象检测阶段的点,这些点靠近四个相应区域(内侧胫骨、外侧胫骨、外侧股骨和内侧股骨),并为每个区域训练一个随机森林(RF)分类器,使用 Haar 特征在每个树节点进行分割。
- 实验数据
- 骨赘检测样本 :从 OsteoArthritis Initiative 数据集中选取 640 个膝盖样本,涵盖不同 OARSI 骨赘等级。
- KL 分级样本 :747 个膝盖图像,具有不同的 KL 等级,在二分类 OA 分类实验中,将等级分为 OA 或非 OA(KL 0, 1 与 KL 2, 3, 4)。
- 分类实验
订阅专栏 解锁全文
48

被折叠的 条评论
为什么被折叠?



