7、骨赘检测与纤维方向估计:医学影像的智能分析

骨赘检测与纤维方向估计:医学影像的智能分析

在医学影像分析领域,骨赘检测和纤维方向估计是两项重要的研究内容,它们对于骨关节炎(OA)的诊断和人类大脑连接性的研究具有关键意义。下面将详细介绍相关的研究方法和实验结果。

骨赘检测用于 OA 诊断
  • 数据处理
    • 形状模型训练 :通过对部分数据的预实验选择点,在这些点上训练形状模型,模型具有 98%的变化,相当于 22 个形状模式。
    • 纹理分析 :不直接寻找骨轮廓,而是在骨赘出现的区域对图像纹理进行分类器训练。定义四个感兴趣区域(ROIs),使用来自基础 RFCLM 对象检测阶段的点,这些点靠近四个相应区域(内侧胫骨、外侧胫骨、外侧股骨和内侧股骨),并为每个区域训练一个随机森林(RF)分类器,使用 Haar 特征在每个树节点进行分割。
  • 实验数据
    • 骨赘检测样本 :从 OsteoArthritis Initiative 数据集中选取 640 个膝盖样本,涵盖不同 OARSI 骨赘等级。
    • KL 分级样本 :747 个膝盖图像,具有不同的 KL 等级,在二分类 OA 分类实验中,将等级分为 OA 或非 OA(KL 0, 1 与 KL 2, 3, 4)。
  • 分类实验
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值