基于局部子空间学习方法的基于块的海马体分割
1. 引言
海马体结构在人类记忆和定向中起着至关重要的作用,其功能障碍与多种疾病相关,如阿尔茨海默病、精神分裂症、痴呆和癫痫等。因此,对海马体结构进行准确分割对于进一步的研究非常必要。然而,由于海马体在磁共振图像中尺寸小、变异性高、对比度低以及边界不连续等特点,开发准确可靠的海马体分割技术是一项具有挑战性的任务。
近年来,提出了许多分割方法,其中基于图谱的方法备受关注。该技术首先通过可变形图像配准构建预标注图谱图像与目标图像之间的对应关系,然后利用获得的变形场将图谱中的标签传播到目标图像空间。但目标图像和图谱图像之间的解剖差异会影响图像配准的准确性,进而影响最终的分割性能。
为了减轻基于图谱分割中解剖变异性的影响,基于多图谱的方法近年来得到了广泛研究。通过在目标图像空间中融合多个图谱的传播标签,基于多图谱的方法可以获得更鲁棒和准确的分割结果。特别是基于块的标签传播方法被认为是基于多图谱分割的一个重要方向,它基于两个图像块外观相似则具有相同解剖标签的假设,但基于块的相似性定义通常使用预定义特征,对于海马体不同子区域的分割可能不够有效。
本文提出了一种基于局部子空间学习的基于块的标签传播方法。该方法为每个图谱中的体素分配一个标签块而不是单个标签进行标签传播。通过在ADNI数据集上的验证,该方法优于其他先进的分割方法。
2. 方法
2.1 基于多图谱的分割方法
给定待分割的目标图像 $I$ 和 $N$ 个图谱 $\tilde{A} = {(\tilde{I}_i, \tilde{L}_i) | i = 1, 2, …, N}$,其中 $\tilde{I}_
基于局部子空间学习的海马体分割方法
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



