Machine Learning
文章平均质量分 59
IceBear6
这个作者很懒,什么都没留下…
展开
-
斯坦福公开课《机器学习》笔记1——监督学习、线性回归
一、监督学习和无监督学习1.监督学习(supervised learning)监督学习,利用一些带标签的数据集对模型进行训练,获取最佳参数。 1)回归问题主要用于连续型的输出,例如预测房价等,模型有线性回归,非线性回归等。问题示例:预测房屋价格,房屋面积与房屋价格的数据2)分类问题主要用于离散型的输出,例如对产品的正反面评价,如逻辑回归等。问题示例:有肿瘤数据预测肿瘤是良性还是恶性分类问题又有单特...原创 2018-04-11 11:25:30 · 496 阅读 · 0 评论 -
斯坦福公开课《机器学习》笔记3——过拟合、避免过拟合的损失函数
1.过拟合(overfitting)1)定义过拟合:如果有很多特征变量,则训练出来的假设函数模型会对训练样本拟合的很好,但是对于新加入的数据,假设函数模型不能拟合的很好,又称为High Variance。欠拟合:则是假设函数不能对训练样本进行很好的拟合,又称为High Bias。2)如何处理过拟合:1>减少特征变量的数量(但是这样也减小了数据的信息) 手动减小特征变量数量利用算法自动减小特征...原创 2018-04-16 22:49:20 · 888 阅读 · 0 评论 -
斯坦福公开课《机器学习》笔记2——逻辑回归、分类问题
一、逻辑回归(logistic regression))1.分类问题预测输出变量离散,例如:y∈{0,1}或y∈{0,1,2}。问题示例:垃圾邮件分类,肿瘤恶性良性。应用线性回归于分类问题通常不是个好主意。2.表征假设(hypothesis representation)1)逻辑函数/S函数(logistic function/sigmoid function) g(z)g(z)=1/1+e-zz...原创 2018-04-13 10:28:06 · 311 阅读 · 0 评论 -
C++加载运行Tensorflow模型
1.Tensorflow提供了C++API来建立一个graph,但是对于python并不那么完善,许多特性在C++中并不可用。另外一种方法是,用C++ API加载预先训练好的graph,来单独或是嵌入到其他应用中。当前有关用c++加载graph的文档非常少,这里提出一个简单的例子。参考自:https://medium.com/jim-fleming/loading-a-tensorflow-g...原创 2017-12-05 15:16:45 · 5500 阅读 · 1 评论 -
TensorFlow使用C++加载使用训练好的模型,.cc文件代码实现的相关类及方法总结
在官网API和Tensorflow源码头文件中查看获取。同时参考https://medium.com/jim-fleming/loading-a-tensorflow-graph-with-the-c-api-4caaff88463fhttps://vimsky.com/article/3600.html1.整体逻辑 /// ```c++ /// tensorflow::...原创 2017-12-05 15:14:21 · 3147 阅读 · 0 评论