自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1100)
  • 收藏
  • 关注

原创 构建医疗AI智能体框架:从感知到推理的六大核心模块

本文提出了医疗AI智能体的六大核心模块框架:感知、对话接口、交互系统、工具集成、记忆学习和推理。通过七种专业智能体类型的协同配合,构建安全、可解释且自适应的医疗AI系统,推动人工智能在医疗领域的深度应用。原文PDF https://t.zsxq.com/wKnwa开发医疗AI智能体远比将通用算法简单应用于临床数据复杂得多。它需要深思熟虑地构建模块化、专用架构,能够在复杂的医疗生态系统中模拟智能、上下文感知的协作者。

2025-12-25 16:01:30 454

原创 Dify企业版 vs 开源版:6大核心差异,一文讲透!

随着AI进一步的发展,越来越多的企业开始着手于内部的私有化AI建设,通过AI应用的构建、普及加强员工AI素养,提升员工工作效率,而Dify凭借其强大而友好的AI大模型应用编排能力,以及开源免费的特性,受到了众多企业的青睐,逐步成为各企业构建私有化AI平台的首选。Dify除了免费的开源版本,还面向各企业提供Dify企业版,因为两者主要的差异点不是在具体的应用功能上,而是在服务,部署方式以及性能方面,大部分文章描述的不是那么通俗易懂,今天,我就通过更简单形象的表达来讲清楚两者的核心差异点。

2025-12-25 11:51:51 474

原创 上下文工程之后又一门新兴技术:智能体工程!从零基础到生产环境部署,一篇全掌握!

智能体工程是将非确定性的大语言模型(LLM)系统逐步优化为可靠生产级应用的迭代过程。这是一个循环往复的流程:构建、测试、部署、观察、优化,再重复。核心要点在于,部署并非最终目标。它只是一种手段,帮助你获取新的洞见并改进智能体。要实现有意义的优化,你需要了解生产环境中的实际运行情况。这个循环迭代的速度越快,智能体的可靠性就会越高。

2025-12-24 10:30:54 933

原创 知识图谱公司 Timbr的GraphRAG:用结构化+非结构化数据赋能更智能的AI

GraphRAG(基于图的检索增强生成)是一种新兴方法,它通过结合图驱动的结构化数据检索与基于向量的非结构化数据搜索,增强了传统RAG的能力。在标准RAG设置中,LLM通过从文档中检索文本片段(通过向量相似度)来回答问题。这种方法在许多情况下有效,但在处理需要连接事实或对结构化数据进行推理的复杂查询时却力不从心。基线RAG系统往往"难以将各个信息点连接起来",也难以理解大型文档中的整体概念。对比维度传统DIY GraphRAG知识图谱设置。

2025-12-24 10:25:58 757

原创 AI Agent实战全攻略:从零基础到精通,构建高性能数字员工的10大核心经验,一篇就够了!

核心原则:如果你的领域任务相对独特且对稳定性要求较高,自定义工具协议和指令是值得尝试的。由于我们的Agent项目起步较早,在2023年Qwen模型刚推出的时候,我们就开始探索早期的Agent调用了,在当时业界的工具调用标准尚未统一,我们就自定义了一套工具调用协议。这套协议除了包含工具的Schema,还在Prompt中加入了一些针对我们领域的特定要求和提示词指令。后来,业界标准逐渐向OpenAI的Function Call协议以及Anthropic 的MCP协议统一,我们也开始做相关的兼容测试。

2025-12-20 10:51:15 1036

原创 为什么说多模态是推荐系统破局的关键?来自闪购一线的实战复盘

从这些工作可以看出,业界在多模态推荐的两大核心挑战上形成了不同的技术路线:基于ID交互关系对齐(快手QARM):适配现有推荐行为分布,但可能导致多模态特征退化;基于语义交互关系对齐(阿里妈妈):保持语义纯粹性,但可能脱离真实推荐场景;联合训练对齐(小红书AlignRec):通过深度融合平衡两者,但训练复杂度较高;量化编码(快手):将语义特征转化为可更新的语义ID,解决多模态表征更新问题;相似度分桶(淘宝):将连续相似度离散化为固定维度向量,简化使用方式;

2025-12-20 10:35:53 585

原创 如何使用Dify+LangGraph构建企业级多智能体系统

使用。

2025-12-19 11:55:17 853

原创 什么是智能体工程Agent_Engineering?从零基础入门到精通!

智能体工程其实就是一个不断迭代的过程,把那些"不太靠谱"的大模型系统,慢慢打磨成生产环境能用的稳定应用。构建、测试、上线、观察、优化、重复。智能体工程循环图划重点:上线不是终点,而是开始真正学习的时刻。想让智能体真正靠谱,你必须知道它在生产环境里到底干了啥。这个循环转得越快,智能体就越稳。

2025-12-19 11:46:35 1356

原创 知识图谱从0到精通:9大核心技术详解,小白程序员必备指南!

知识图谱是揭示实体间关系的语义网络,构建包括九大核心技术:知识抽取、实体抽取、关系抽取、属性抽取、实体对齐、知识表示、知识融合、知识更新和知识推理。这些技术从异构数据源提取实体和关系,通过RDF三元组等形式表示知识,融合不同来源信息,解决冲突,形成高质量知识库,并通过推理挖掘隐含知识。本质上,知识图谱是一种揭示实体之间关系的语义网络,是对现实世界事物及相互关系的形式化描述。1、知识抽取。

2025-12-18 16:12:14 533

原创 认识AI智能体:是什么?能做什么?

AI智能体是怎么工作的?Model 模型(大脑):这是核心,通常是一个语言模型,负责思考、分析和做决策。你可以为它选择最合适的“大脑”,甚至专门训练它,让它更擅长处理特定任务。Tools 工具(手脚):模型本身与世隔绝,工具就是它的手脚。通过这些工具,智能体才能与现实世界互动,比如查询数据、执行操作,从而完成模型本身做不到的事情。Orchestration 编排层(工作流程):这是驱动智能体的固定工作模式,基本遵循“观察-思考-行动”的循环。它会一直重复这个流程,直到任务完成。

2025-12-18 14:02:49 1332

原创 什么是智能体工程Agent Engineering?

智能体工程其实就是一个不断迭代的过程,把那些"不太靠谱"的大模型系统,慢慢打磨成生产环境能用的稳定应用。构建、测试、上线、观察、优化、重复。智能体工程循环图划重点:上线不是终点,而是开始真正学习的时刻。想让智能体真正靠谱,你必须知道它在生产环境里到底干了啥。这个循环转得越快,智能体就越稳。

2025-12-17 14:59:23 999

原创 万字长文AI智能体:17种智能体架构详解,一篇全搞定!

然后执行一个。

2025-12-17 11:13:31 549

原创 多模态RAG技术总结及知识图谱构建分割+抽取+验证三阶段思路

RAG作为一种范式,可以灵活扩展,可以来个暴力组合,写综述。变成从文本RAG到多模态输入-文本输出,再到多模态输入-多模态输出的一个演进。这块,看一个技术总结,如《》,https://doi.org/10.36227/techrxiv.176341513.38473003/v2,https://github.com/INTREBID/Awesome-MM-RAG,所有可能使用的模态组合作为输入和输出,包括文本、图像、音频、视频、代码、表格、知识图谱、3D 对象等。一共54个。看几个点。

2025-12-11 11:26:48 861

原创 Google上下文工程精解:从Sessions到Memory,打造智能Agent完全指南!

文章基于Google发布的上下文工程白皮书《Context Engineering: Sessions & Memory》,系统介绍了构建智能Agent的两大基础:会话(Sessions)与记忆(Memory)。通过精读、翻译与结构化整理,提供了理论框架和实践指南,帮助读者理解如何打造更聪明、更个性化、可持续学习的AI Agent,以PPT形式呈现便于掌握关键思想与应用方法。Google 在上月发布了一篇重要的上下文工程白皮书与。

2025-12-05 11:57:20 977

原创 《Agentic设计模式》:构建智能系统的实战指南!

简单来说,AI智能体是一个能够感知环境并采取行动以实现特定目标的系统。它是大语言模型(LLM)的进化版本,增强了规划、使用工具和与环境交互的能力。接受任务:你给它一个目标,如"整理我的日程"扫描环境:收集所有必要信息——读取邮件、检查日历、访问联系人制定计划:思考实现目标的最佳方法执行行动:发送邀请、安排会议、更新日历学习改进:观察结果并适应调整,持续优化这种循环机制让AI智能体能够像人类助手一样在工作中不断学习和改进。

2025-12-05 11:47:36 743

原创 大模型推理引擎全解析:从Transformers到vLLM,一篇掌握技术选型与优化秘籍(收藏必备)

文章深入解析大模型推理引擎技术演进,对比Transformers动态图、llama.cpp量化优化与vLLM分页内存管理三大核心技术,通过操作系统类比帮助理解技术本质,并提供针对不同硬件环境与业务需求的精准选型指南,助力开发者高效落地。后台收到了不少朋友的留言。大家在尝试部署本地大型语言模型(LLM)时,面对llama.cppvLLMOllama等 LLM 领域技术名词,往往感到困惑:它们是对开发者透明的工具,还是有必要优化的技术?

2025-12-04 15:44:34 831

原创 知识图谱增强大模型实战教程:零基础入门到精通,一篇就够了!

本文提出NRAG框架,创新性地融合大语言模型与医学知识图谱,专注于门急诊神经外科疾病诊断。该框架通过知识图谱检索补充缺失症状信息,实现可解释的智能诊断,F1分数达0.8150,为临床辅助决策提供可靠依据。原文pdf:https://t.zsxq.com/5kL64NRAG框架代表了人工智能辅助医疗诊断领域的重大突破,成功解决了传统诊断系统长期面临的核心挑战。通过创新性地融合大语言模型与医学知识图谱,NRAG在门急诊神经外科这一时间敏感、信息碎片化的复杂场景中,实现了准确性、可解释性与实用性的完美平衡。

2025-12-04 15:00:32 1283

原创 仅需3元+2小时,从零训练出25.8M超轻量语言模型?

MiniMind是轻量级大模型开源项目,仅25.8M参数却实现对话能力。项目提供从环境准备到模型训练的极简路径,使用PyTorch原生实现,降低学习门槛。当大语言模型还在比拼千亿参数、百亿算力时,一个反其道而行之的项目悄然走红——MiniMind用25.8M参数(仅为GPT-3的1/7000)、3元服务器成本和2小时训练时间,实现了从0到1构建可对话的语言模型。这个完全开源的项目,正在重新定义普通人接触大模型的门槛。

2025-12-04 11:47:36 865

原创 LangChain智能体开发全攻略:从零基础入门到实战精通,一篇搞定!

LangChain已发展为全面的智能体开发框架,提供从研发到部署的完整解决方案。核心组件包括Chains、Agents等,通过LangSmith实现调试追踪,LangGraph处理复杂控制流。涵盖Runnable接口、LCEL表达式语言、无状态与有状态系统区分,以及应用案例如聊天机器人和RAG系统。丰富的第三方工具集成使开发者能高效构建大模型应用。LangChain 在初期被人吐槽抽象复杂、API难用。现在已经逐渐成熟,发展成了一套从研发、调试到部署的很全面的框架,是入门智能体开发的好帮手。

2025-12-02 16:09:49 1225

原创 LangChain 1.0入门到精通:create_agent与Middleware实战指南,一篇就够了!收藏必备!

本文详解LangChain 1.0两大核心更新:create_agent简化了带工具调用的ReAct agent创建,通过循环判断tool_call实现自动化;Middleware采用切面编程提供6个hook点,使Context Engineering更加便捷,内置人工确认、请求限制等实用功能,大幅简化了多轮循环应用的开发流程。LangChain 最近更新了1.0版本,其中最重要的两个内容是和。

2025-12-02 15:26:07 585

原创 AI如何重新定义研究?万字长文讲透Deep Research技术

自 2023 年 AutoGPT、GPT-Engineer 等原型工程引爆“Agent”概念以来,大模型的应用落地从“问答和摘要”迅速升级为“自治任务执行”。所谓 AI Agent,是可以在最小人工干预下完成「感知 → 规划 → 行动 → 反馈」闭环的智能体,既能解析自然语言目标,又能调用搜索引擎、数据库等外部工具。随着互联网等领域陆续跑通第一批端到端 PoC,企业级需求出现了三条明显的技术主诉:● 实时性:Agent 必须随时接入最新数据而不依赖百亿参数中 “冻结” 的旧知识;

2025-12-02 13:45:05 1125

原创 终于有人把“智能体”的概念给我讲明白了!

其实 AI 智能体和聊天机器人有区别,它更多强调的是 AI 的自主性。人类提供任务,AI 自主拆解调用工具去执行。从结构层面来讲,现在其实有一大堆智能体。但从能力层面来讲,其实很多所谓的智能体还没有真正达到比较理想的状态。我觉得重要的不是纠结这个概念,重要的是能够根据自己的场景,根据自己的一些缺点,创建各种智能体,打造属于自己的智能体军团,让 AI 真正的为自己的工作生活学习带来实实在在的帮助。

2025-11-29 12:03:21 1302

原创 Hugging Face全栈教程(超详细)从零基础入门到大模型应用,收藏这一篇就够了!

在 Hugging Face 的 Transformers 库中,每一个预训练模型都配套绑定有一个专用的 Tokenizer,它负责将原始文本转换为模型可以理解的输入格式(如 input_ids、attention_mask 等),是连接原始文本与模型计算之间的关键环节。子词切分(subword tokenization):将输入文本拆分为子词单元;编码映射:将每个子词转换为对应的整数ID,即 input_ids;添加特殊Token:自动插入如 [CLS]、[SEP] 等任务相关的特殊符号;

2025-11-29 11:27:37 2192

原创 RAG被判死刑:Google用一行API架空工程师!

Google的Gemini File Search将RAG技术从复杂的工程系统转变为简单的API调用,自动完成分块、检索、索引等步骤。这一变化降低了技术门槛,提高了开发效率,但也使工程师从系统构建者变成了系统调用者,失去了对系统的解释权和控制权。技术复杂性被隐藏,权力从工程师转移到了平台,标志着AI开发进入了零配置时代。

2025-11-28 13:55:19 325

原创 RAG系统性能优化宝典(超详细)从局部陷阱到系统级解法,收藏这一篇就够了!

大规模RAG系统的延迟优化,从来不是一个单一维度的技术问题。它需要我们跳出局部,从整个系统架构的视角去审视和改造。从前置的预处理与智能检索,到中间的上下文精炼与多级缓存,再到后端的模型推理加速与系统级编排,每一个环节都蕴藏着巨大的优化潜力。只有将这些技术有机地结合起来,才能构建出真正低延迟、高吞吐、能稳定支撑生产环境的RAG系统。这不仅是技术挑战,更是工程智慧的体现。

2025-11-28 11:56:57 431

原创 AI大模型架构革命:从长提示词困境到多智能体系统(MAS)设计全攻略(必收藏)

多智能体系统(MAS)是用大语言模型(LLM)实现的模块化系统。在MAS中,每个模块称为一个"智能体"(Agent),多个智能体协作完成复杂任务,每个智能体具备真正的模块特征:明确的边界、各自独立的生命周期、清晰的输入输出接口、彼此隔离的运行时上下文。与传统软件模块相比,智能体的特殊之处在于它使用自然语言定义(而非编程语言),可以理解复杂的意图和上下文,可以自主决策执行策略(而非机械执行指令),可以使用工具完成任务(如搜索、读写文件)。

2025-11-27 13:57:37 1148

原创 免费使用 Gemini 3 的几种方法

昨天文章发出去后,有不少同学问:在哪里下载 Gemini 3、怎么使用?大部分问的人都是互联网行业外的,显然 Gemini 3 是不用下载的,只要用就可以了。下面介绍几种使用 Gemini 3 的方法。

2025-11-27 11:37:24 2205

原创 Gemini 3大模型实战教程(超详细)从零基础入门到AI应用创造,收藏这一篇就够了!

Google Gemini 3大模型表现卓越,在代码生成、界面复现、应用开发等方面展现出惊人能力。它能快速复刻复杂界面、创建可运行游戏,甚至实现应用与AI的无缝集成。Gemini 3降低了技术门槛,使"所想即所得"成为可能,可能颠覆传统App Store模式。作者认为该模型打破了代码、UI等技术壁垒,创意成为最稀缺资源,是2025年最令人惊喜的AI模型。实不相瞒啊家人们,世超今天班都没怎么上。别问,问就是玩了一整天的 Gemini 3,太太太好玩了。

2025-11-25 16:06:45 1054

原创 Gemini 3大模型完全指南(保姆级教程)从基础到精通,程序员必学干货!

谷歌推出Gemini 3系列AI模型,其中Gemini 3 Pro具有卓越推理能力、多模态理解和智能体编码能力,在基准测试中创下37.4分最高分。该模型可同时处理文本、图像和音频,将创意转化为应用,已整合至谷歌搜索服务,提供更智能、简明的回答,支持多样化视觉内容呈现,目前在AI基准测试平台位居首位。谷歌推出Gemini 3人工智能模型。图片来源:《纽约时报》官网当地时间18日,谷歌正式推出Gemini 3系列人工智能(AI)模型,并同步上线Gemini 3 Pro预览版。

2025-11-25 15:44:51 1208

原创 Agent+Coding开发全攻略:京东云AI新范式从入门到精通,一篇就够了,必收藏!

文章探讨了京东云提出的"Agent+Coding"AI开发新范式,通过JoyAgent 3.0和JoyCode 2.0双平台协同,解决企业AI转型的理念、工具和信任三大瓶颈。该范式实现Agent简化代码、代码反哺Agent的闭环,让AI开发更自动化、智能化,最终实现"从开发者少写代码,到开发少写代码",推动AI在企业工作流与业务系统中的全面渗透。人工智能领域,围绕Agent应用与配套架构的思考,正在如火如荼地进行着。

2025-11-22 15:00:40 1146

原创 GenFlow 3.0全攻略:从零基础到精通AI工作流,一篇就够,建议收藏!

GenFlow 3.0具备Agent记忆、Office联动和多模态生成能力,能并行处理任务并支持中途打断。它记住用户偏好,连接网盘与文库,生成式工作流解决了日常文档处理难题。作为AI工作流工具,它从被动响应转向主动协助,让AI真正"记住"用户,提高工作效率。

2025-11-22 11:32:42 1845

原创 AI界的“四大天王”:AIGC、RAG、Agent、MCP

为啥我会写这篇文章?是因为我前几天看到一个报告,报告显示,大部分人还只是停留在简单与模型对话,甚至只有2%的人开发过智能体,更离谱的是30%多仅仅是听说过。表明整体AI技能基础相对薄弱。技术圈针对AI已经到了疯癫的程度,这份报告颠覆了我之前的看法,以为AI如干柴烈火之势的发展,大家应该或多或少都知道一些相关的知识,但在技术圈往往会出现幸存者偏差,所以老周得出来写一篇AI相关技术的普及知识。随着AI技术发展迅猛,日新月异。

2025-11-21 13:45:22 1201

原创 LangChain+LangGraph+LangSmith实战教程:从零构建、部署到评估智能体AI系统,一篇全掌握!

LangSmith是LangChain推出的一个监控和评估平台。它不依赖于特定框架,旨在与任何智能体框架(例如LangGraph)甚至完全从头构建的智能体配合使用。可以轻松配置LangSmith来跟踪 (trace)运行过程,并追踪智能体系统的开支。它还支持对系统进行实验 (experiments),例如更改系统中的提示词 (prompt) 和模型,并比较结果。它具有预定义的评估器,如有用性 (helpfulness)正确性 (correctness)和幻觉 (hallucinations)。

2025-11-21 11:40:11 956

原创 使用大语言模型从零构建知识图谱(下)超详细教程,小白也能轻松掌握!

本文作为构建知识图谱的现代方法的入门介绍。首先,我们探索了传统方法并概述了 Cypher 语言,然后创建了一个简单的 LLM 图构建器来自动化图构建过程,其性能与手动过程中实现的性能相匹配。最后,我们更进一步,引入了 LangChain 的 LLMGraphTransformer,它显著改进了我们的知识图谱。然而,这只是我们 Graph RAG 之旅的开始,特别是我们的图构建器之旅。我们还需要探索和从头构建更多现代方法,我们将在未来的文章中完成这些工作。

2025-11-19 14:07:51 1147

原创 收藏级教程:Marble多模态AI:从文本到3D世界的零基础入门到精通指南

Marble确实是太猛了!!!真的是彻底改变了3D世界,让3D变成有温度的智能空间,未来肯定越来越多的行业会用到。家里的装修,甚至可以自己去做设计了。想起来AI刚出来的时候,有个游戏行业的人给我说,智能都是没用的,因为所有的新技术出来都要游戏行业先用上才算有用,因为他们没用上,所以智能没有未来。如果还能再次遇见他,我肯定会告诉他“你的认知太低了”。现在会员很便宜,买个玩玩体验体验。Pro会员首月只要1美金,折合人民币7块多。

2025-11-19 11:44:19 1108

原创 OpenAI拆开AI「黑箱」,终于可以看懂GPT在想什么了

破解大模型「黑箱」的钥匙找到了?刚刚,在理解大模型复杂行为的道路上,OpenAI又迈出了关键一步。他们从自己训练出来的稀疏模型里,发现存在结构小而清晰、既可理解又能完成任务的电路(这里的电路,指神经网络内部一组协同工作的特征与连接模式,是AI可解释性研究的一个术语)。这意味着,如果真存在一种可行的方式来训练机制可解释的大型系统,它们将是破解大模型「黑箱」的钥匙。麻省理工科技评论认为,OpenAI的新研究对于破解大模型「黑箱」意义重大:

2025-11-18 14:56:04 856

原创 AI大模型Dify知识库图文混排教程(超详细)从零到精通,两种主流方案一次讲清,看完收藏!

核心收益•灵活性高:知识库源文件(Markdown)和图片资源(图床)是分离的,未来无论迁移到哪个系统,都非常方便。•方便管理:图片资源集中在图床(如 OSS)管理,查找、替换都很方便。但是缺点•成本:需要额外的图床服务器或对象存储服务费用。•运维:需要处理图床的访问权限、白名单(就像我遇到的 Referer 问题),甚至要多维护一个系统。所以word方案总结下来,就是成本短期相对低一些,不需要单独的图床服务器,图片存储在dify的 Docker 卷中,开箱即用。

2025-11-18 14:30:19 473

原创 30分钟搞定RAG智能客服!成本直降70%,从零到精通!

RAG的全称是检索增强生成(Retrieval-Augmented Generation),简单说就是:先检索、再增强、后生成。举个例子:假如你是一家建筑公司的客服,用户问:“修一座桥要多少预算?如果没有RAG,大模型可能瞎编一个数字,或者直接说“我不会”。去你公司的历史项目数据库里找类似的项目预算;把找到的数据和用户问题组合成一个更详细的提示词;再交给大模型生成回答。这样一来,模型的回答就不是凭空来的,而是有据可查、真实可靠的!

2025-11-14 13:40:28 884

原创 LangChain智能体开发全攻略(超详细)从零基础到精通,一篇搞定,收藏必备!

在深入细节之前,让我们先了解一下什么是Agent。推理—对问题和任务进行思考与分析;行动—调用工具或外部服务处理问题;观察—查看获取的结果;迭代—不断重复上述过程,直到达到预期的目标。不同类型智能体之间的关键区别在于:它们与大语言模型的交互方式不同,也就是它们在执行推理与工具选择过程时,与模型之间的通信方式存在差异。

2025-11-14 11:50:13 836

原创 大模型微调库全面对比!

本文对比分析了Hugging Face、Llama Factory和Unsloth三种大型语言模型微调工具的性能。实验显示,单GPU环境下Unsloth内存效率最优,多GPU配置下Llama Factory分布式训练能力更强。研究揭示了序列长度对训练时间的显著影响,并针对不同硬件配置提供了明确的工具选择建议,帮助开发者优化微调流程。本文对 Llama Factory、Unsloth 和 Hugging Face 在微调大型语言模型方面的全面性能分析!

2025-11-13 14:49:38 781

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除