自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(964)
  • 收藏
  • 关注

原创 国产大模型上新!测评达全球第一梯队,价格比DeepSeek更低……

6月11日,字节跳动旗下火山引擎举办Force原动力大会,。字节跳动CEO梁汝波表示,AI发展还处于早期,只是马拉松的前500米。在AI大模型带来的技术变革时代,字节跳动致力于成为优秀的创新科技公司。据字节跳动介绍,。目前,该系列已在火山引擎上线,企业和开发者可调用API体验。火山引擎总裁谭待称,豆包1.6系列模型。此前,豆包1.5的多模态能力在60个公开评测基准中取得38项最佳成绩,已广泛应用在电商识图、自动驾驶数据标注、门店巡检等场景。图形界面操作能力则让豆包1.6进一步具备“行动力”。

2025-06-12 10:20:10 508

原创 7款AI大模型写高考作文,名师点评结果让人惊讶,有的跑题了?!

刚刚,2025年高考作文题目出炉,再次成为亿万网友关注的话题。今年湖北高考语文采用全国一卷,作文题为根据给定的材料进行写作。阅读下面的材料,根据要求写作。(60分)他想要给孩子们唱上一段,可是心里直翻腾,开不了口。——老舍《鼓书艺人》(见全国一卷阅读II)假如我是一只鸟,我也应该用嘶哑的喉咙歌唱——艾青《我爱这土地》我要以带血的手和你们一一拥抱,因为一个民族已经起来——穆旦《赞美》以上材料引发了你怎样的联想和思考?请写一篇文章。要求:选准角度,确定立意,明确文体,自拟标题;

2025-06-10 11:47:05 786

原创 从一位AI大厨的角度带你全方位了解大模型微调

本文介绍了微调的基本概念,以及如何对语言模型进行微调。微调技术作为迁移学习的重要实现方式,其核心在于通过特定领域数据的二次训练,使预训练语言模型获得领域适配能力。随着分布式训练技术和模型压缩技术的进步,微调过程的计算效率持续提升。相信随着算力增长,微调的成本门槛会越来越低,微调技术应用的场景也会越来越多。未来,随着量子计算等新型计算架构的发展,微调技术有望实现分钟级的模型迭代周期,这将彻底改变现有AI应用的开发范式。

2025-06-10 09:00:00 657

原创 大模型能够自发形成“人类思维地图”!Nature子刊重磅研究揭示多模态大模型类脑机制

大模型≠随机鹦鹉!Nature子刊最新研究证明:大模型内部存在着类似人类对现实世界概念的理解。LLM能理解现实世界和各种抽象概念吗?还是仅仅在“鹦鹉学舌”,纯粹依靠统计概率预测下一个token?长期以来,AI社区对这一问题存在很大的分歧。有一种猜测是,纯粹基于语言的形式(例如训练语料库中token的条件分布)进行训练的语言模型不会获得任何语义。相反,它们仅仅是根据从训练数据中收集的表面统计相关性来生成文本,其强大的涌现能力则归因于模型和训练数据的规模。这部分人将LLM称为“随机鹦鹉”。

2025-06-09 21:21:06 898

原创 多模态 GraphRAG 初探:文档智能+知识图谱+大模型结合范式

本次分享聚焦多模态 GraphRAG,深度剖析了文档智能解析的技术链路,并梳理了相关工作进展,全方位呈现了文档智能、知识图谱与大模型结合的应用范式。文章主要包括以下几大部分:\1. 文档智能解析技术链路与文档层级关系构建\2. 多模态图索引构建与多模态检索生成流程\3. 知识图谱解决 chunk 之间关联以及细粒度问题\4. 文档多模态 RAG 相关工作进展\5. 总结\6. 问答环节01文档智能解析技术链路与文档层级关系构建首先来整体介绍一下文档智能解析技术方案。上图中对传统 RAG 和微软 GraphR

2025-06-09 21:16:03 1048

原创 DeepSeek现在能直接生成Word、PDF、Excel了,还能一键导出,这个确实很赞!

这篇文章解决了传统手动复制粘贴方式,容易格式出错,出现多余字符等的问题。本文介绍了上面的解决方法,让 DeepSeek-R1 模型直接生成可下载的 Word、PDF、Excel 等格式文档。通过一句简单提示词,即可生成带有下载按钮的 HTML 预览,提升了导出效率和格式兼容性。在 DeepSeek-R1 的 0528 新版本中,推理能力提升较多,数学场景中 token 使用量翻倍,准确率显著提升,幻觉率下降 45%。

2025-06-07 14:22:12 1258

原创 手把手教你用macOS + Ollama + Enchanted,本地部署最新 Llama3,保姆级教程!

4月19日,Meta开源了大模型Llama3,并在多项指标上超越了现有最先进的大模型。Ollama社区也同步新增 Llama3 的支持。接下来,我们将在MacBook Pro上部署Llama3,让大家在本地体验最强开源大模型。硬件设置,MacBook Pro (2019款),Intel CPU,8 Core,16GB内存。

2025-06-05 11:53:56 961

原创 吴恩达评Agent现状:MCP尚处“蛮荒”,单Agent跑通已是“奇迹”,A2A协作堪称“双重奇迹”

前几天,吴恩达与 LangChain 联合创始人 Harrison Chase 展开了一场对话,而这场对话的背景,正是当前 AI 领域既充满机遇又挑战重重的一个现实。过去几年,AI 工具公司构建出一套功能强大、模块丰富的工具体系。LangGraph、RAG 等组件就像乐高积木,让开发者可以灵活拼装、快速搭建系统。但在真实场景中,往往会卡在某个细节模块,比如上下文管理或评估逻辑。有经验的人能迅速换个解法几天解决,没经验的可能要多绕几个月的弯路。

2025-06-04 12:07:42 1002

原创 MRAgent:一种基于大模型的自动化医疗智能体,用于通过孟德尔随机化发现疾病中的因果知识

在医学研究中理解因果关系对于开发有效的干预措施和诊断工具至关重要。孟德尔随机化(MR)是一种通过遗传数据推断因果关系的关键方法。然而,MR分析通常需要预先从临床经验或文献中识别暴露-结果对,这可能难以获得。这给调查特定疾病因果因素的临床医生带来了困难。为解决这一问题,我们推出了MRAgent,这是一种创新的自动化代理,利用大型语言模型(LLMs)来增强疾病研究中的因果知识发现。MRAgent自主扫描科学文献,发现潜在的暴露-结果对,并使用大量的全基因组关联研究数据进行MR因果推断。

2025-06-04 12:01:39 977

原创 大模型入门:9个核心概念

•:Token是模型处理文本的最小单位,可以是字、词或符号。•:像“乐高积木”,中文1个token≈1-2个字,英文1个token≈0.75个单词。•Hello!•:API按token计费,长文本需控制token数(如限制北京是中国的首都•:模型边生成边返回(像“流水”一样实时传输),而非等全部生成完。•:看直播(流式) vs 下载完再看(非流式)。•:减少等待时间,适合长回答(如文章生成)。••:控制输出的随机性,像“脑洞大小调节器”。•:让模型补全“文本中间缺失部分”,而不仅续写结尾。•。

2025-06-03 21:52:51 647

原创 成为一名优秀的AI产品经理:2025年AI产品经理必备:大模型产品经理终极学习路线图,一篇就够了!

成为一名优秀的AI产品经理,需要具备深厚的技术背景、良好的产品直觉、敏锐的市场洞察力以及出色的沟通协调能力。以下是一份详尽的AI产品经理学习路线,旨在帮助有意进入该领域的学习者建立起坚实的基础,并逐步成长为行业内的专家。一、基础知识阶段二、人工智能技术基础三、产品管理和商业分析四、AI产品经理特定技能五、实践与案例研究六、软技能提升七、持续学习与成长跟进行业动态:关注AI领域的最新技术和趋势。参加培训和会议:参加线上或线下的研讨会、论坛等。阅读专业文献:定期阅读最新的学术论文和技术博客。

2025-05-28 17:15:15 904

原创 AI赋能:打造企业专属智能知识库的策略与实践

想象一个由人工智能管理的强大数据库,它不仅存储信息,还能理解、分析和运用这些信息。这就是AI知识库——一个能够自我学习、不断进化的智能系统。

2025-05-28 11:29:00 738

原创 什么是Agent?工作原理是什么?以及如何评测Agent_agent的工作

大家有没有想过这样的问题:“已经有大模型了,为什么还要做Agent?大模型不是也能得到Agent中得到的结果吗?“Agent与大模型之间具体有什么区别呢?首先让我们先从定义上看看这两者有什么区别:大模型是基于深度学习、拥有数十亿至数千亿参数的人工智能模型,能通过海量数据学习复杂模式,具备文本生成、逻辑推理等多任务处理能力,是当前 AI 领域的核心突破方向。所以从上述来看,大模型只提供任务方法,具体行动还是需要人去做执行;

2025-05-28 11:17:09 713

原创 论文浅尝 | 基于历史链推理的时间知识图谱预测(ACL2024)

本文首先分析了现有基于LLM的模型在如何有效地为LLM提供全面的高阶历史信息方面的不足和挑战。然后本文指出,仅依靠LLM的推理能力进行TKG预测仍然是有限的。为了解决这些问题,本文提出了CoH推理,该推理实现了LLM对高阶历史的有效利用。本文将CoH设计为即插即用,以补充和增强基于图的模型的性能。大量的实验结果证明了CoH的优越性,以及它在提高基于图的TKG预测模型性能方面的有效性。

2025-05-27 18:06:55 934

原创 Claude 4 大揭秘:不仅更强,还更“负责”的 AI 新物种

❝在 AI 模型卷出“天际”的今天,仅有强大还不够。Anthropic 最新发布的 Claude 4 系列,不仅在能力上刷新高度,更在安全性与负责任 AI 实践上,交出了一份令人瞩目的答卷。这篇文章将带你深入解读 Claude 4 Opus 与 Sonnet 的真实能力,从“混合推理”到“屏幕操控”、从智能体化到安全机制,每一项突破背后都藏着 Anthropic 对 AI 边界的深思与创新。

2025-05-24 11:55:32 754

原创 一文带你 “看见“ MCP 的过程,彻底理解 MCP 的概念

一、前言说实话,当我看到使用 MCP 服务还需要手动复制粘贴 JSON 的时候,包括现在很多 MCP 服务只有工具,没有资源和提示时,我认为 MCP 还不太成熟。随着今年“智能体”的大爆发,使用工具的诉求越来越强烈。随着 MCP 服务市场、MCP 自动配置功能的出现,MCP 的使用门槛正在降低,越来越多的服务宣布支持 MCP 协议,开始要爆发的趋势。

2025-05-23 11:54:39 960

原创 MCP for 可观测2.0,6个让MCP开发更高效的小妙招

阿里妹导读可观测近年来已经成为一个关键概念,它不仅仅局限于监控,还包括了日志记录、指标收集、分布式追踪等技术手段,旨在帮助团队更好地理解系统运行状况、快速定位问题以及优化性能。可观测2.0融合 MCP,可以让用户更好地感知系统、分析问题——用自然语言开启与系统的对话!本文将分享6个设计 MCP Server 的亲身实践,帮助大家更好地融合与使用。一、MCP 简述MCP 是一种开放协议,用于标准化应用程序如何向 LLM 提供上下文。

2025-05-16 11:55:54 888

原创 这是我读过最最最好的大模型书!!!

最近终于去看了斌叔反复推荐了好几次的这本大模型书。之前其实就刷到过好几次他提这本了,说它是大语言模型领域的圣经,而且还不是广告。刷到好多次真的有点好奇了,能让一个技术大佬这么念念不忘的大模型书是什么样子啊。一打开有点懂了,讲的很走心,不是堆概念,而是真的带你一步步从零搭出一个 LLM 来,数据预处理、分词器、模型架构、训练流程全都讲了,代码也很可读。如果你是认真考虑进 大模型 领域,不想只会用现成模型,这本真的值花时间啃一啃。

2025-05-15 15:07:57 612

原创 4.7万Star!从零开始构建大语言模型!这个GitHub宝藏项目让你彻底理解LLM核心原理

想了解大语言模型(LLM)内部原理,但被复杂的技术细节吓退?别担心,今天给大家介绍一个真正的GitHub宝藏项目 - LLMs-from-scratch,目前已经收获了惊人的47359个star!这个项目不是简单的API调用教程,而是的完整代码库。

2025-05-15 12:07:08 687

原创 大任智库|《AI落地应用最新工具集》,太全了!DS使用、API、AI搜索、AI生图/视频、AI PPT,全整理好了等你来撩!

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括CSDN粉丝独家福利这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以免费领取读者福利:对于0基础小白入门:如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。

2025-05-14 11:26:45 594

原创 Qwen3技术报告的几点细节、ArXiv论文翻译实现方案及试错历程

插入该指令后,模型会基于到那时为止积累的推理生成最终回应。

2025-05-14 11:25:28 743

原创 为什么训大模型都不用dropout

昨天在一个讨论群里有朋友提到了这个问题。这个问题很有意思,训大模型不用dropout属于现在大家的默契了。我总结三点这块是大家实践出来的,dropout在设计之初就有一个致命问题。训练和推理的行为不一致,为了让他尽量一致,选择了一个scale的方案,scale的方案可以使得推理时tensor的均值和训练一致。但这也仅仅使得均值一致,从一个分布上来讲,连方差都不一样。更不要提其他的细致的分布刻画了。

2025-05-13 12:00:00 531

原创 大模型入门指南 - Distillation:小白也能看懂的“模型蒸馏”全解析

DeepSeek在模型轻量化与性能迁移领域展现出了卓越的技术实力,其核心创新在于数据蒸馏与知识蒸馏的协同应用。通过蒸馏技术,DeepSeek能够将具备强大推理能力的大型教师模型(例如参数规模高达 6710 亿的 DeepSeek R1 大模型)中的核心知识高效压缩并迁移至轻量级学生模型(例如仅含 70 亿参数的 Qwen 7B 模型),在保持推理精度的同时显著降低模型部署成本。************数据蒸馏(Data Distillation)****************** ******

2025-05-13 09:15:00 1012

原创 大模型生成过程可视化开源工具、Zerosearch误读及开源项目中的RAG文档解析问题

本文主要介绍了关于大模型内部运作机制可解释以及技术上的一些有趣发现、挖掘思路。这些都可以应用于我们的实际开发当中,值得看看。

2025-05-13 07:00:00 711

原创 究竟什么是大模型?为什么DeepSeek能突围走红?

2025年春节期间,当我们与亲朋好友畅聊家常时,人工智能也成为了热议的焦点话题。从春晚舞台上扭秧歌的人形机器人,到引发全球科技界轰动的DeepSeek,中国的AI大模型及其应用大放异彩,不仅重新点燃了公众对AI技术的热情,更在各大社交平台掀起了一股讨论热潮,随处可见人们分享使用大模型的体验与见解。**在人工智能领域,大模型是一种具有庞大参数量、极强学习能力的深度学习模型。**模型可以看成一个“函数”,输入文本、图像等数据,通过“运算”,最终输出我们想要的结果。

2025-05-12 10:45:00 2611

原创 关于大模型应用过程中的记忆功能管理问题,以及解决方案

大模型应用的很多功能包括记忆管理,需要的不仅仅只是技术问题,还需要足够的工程化能力才能解决。众所周知,大模型是没有记忆功能的,因此记忆管理就成为大模型应用过程中必不可少的一个环节;虽然说记忆管理说起来很简单,但在实际操作中还是存在很多问题。比如说,随着记忆的增加token成本的上升,大模型窗口的限制,记忆的存储问题等等。因此,今天就从项目的实际操作中来详细了解一下大模型的记忆功能;开发框架是基于langchain的记忆管理模块。大模型记忆管理问题。

2025-05-12 08:15:00 607

原创 给MCP加上RAG,Agent准确率起飞?

嘿,大家好!这里是一个专注于前沿AI和智能体的频道~昨天,arxiv挂了一篇RAG-MCP的论文,忍不住唠叨几句。数据来看,他对Accuracy的提升非常明显。但本质上,鉴于还是有很多小伙伴不是很清楚,MCP、MCP Server是什么?首先,我们需要知道的是,大模型的输入只有prompt。所以,无论是function call,又或者是MCP Server。他们做的都是定义了一个工具描述信息,最终都会被以某种方式填充到prompt里。

2025-05-09 11:55:31 645

原创 超详细使用Ollama本地部署Deepseek

打开浏览器,前往Ollama官方网站。点击下面的按钮,这里选择自己的电脑的版本,我这里是windows的之后就会进行下载了。当然,如果官网下载比较慢的话,可以通过百度网盘获取链接: https://pan.baidu.com/s/1970Py8uuLmCLWMozRV0UJw?pwd=chuv 提取码: chuv下载完成后,双击安装包启动安装程序。按照安装向导的提示逐步完成安装。打开电脑的命令提示符(CMD)或终端,输入“ollama help”并按下回车键。若软件安装成功,将不会显示任何错误信息。

2025-05-09 11:47:55 1212

原创 AI「第二章」开启,未来看应用与Agent!

截至 2025 年5月,AI 的变化大幅变快。或许用“下半场”这个词,还太早,但这但是这肯定是开启了一个新的篇章。Founder Park 近期深度访谈了十几家活跃在一线的投资机构,这些机构包括美元基金、人民币基金、大厂战投以及新成立的基金。本文基于这些高密度信息与洞察的梳理与提炼,希望能给家人们提供具备参考价值的深度思考。\01. 模型投资降温,应用时代开启!\03. Agent 的十字路口:通用 VS 垂直\04. AI 原生硬件\05. AI Infra 与 MaaS\06. 具身智能。

2025-05-08 11:40:34 742

原创 如何用知识图谱+医疗问答对合成推理数据?兼看Deep Research的两个复刻实现拆解

,包含关键信息和引用,适合快速探索和回答简单问题,支持并行使用多个搜索引擎,在相关情况下可以包含表格和结构化信息;一种是。

2025-05-08 11:22:30 1291

原创 建议收藏:想做AI编程产品?先从这段不到400行的Agent代码开始!

去年以来,以Cursor为代表的AI编程工具横空出世,彻底点燃了全球开发者对AI辅助编程的热情。海外各种新颖的AI开发工具层出不穷,几乎每周都有新的概念或产品涌现。反观国内,除了几家互联网大厂有所布局,专注于AI编程工具的初创公司似乎相对较少。这固然有国内大模型编程能力仍在追赶的原因,但或许也有一部分原因是,很多人觉得构建一个AI编程工具,特别是具备复杂交互和能力的“智能体(Agent)”,门槛很高,非常复杂。事实真的如此吗?今天,我们就尝试用。

2025-05-06 14:47:07 783

原创 大模型三种微调Fine-tuning方式深度分析 2025

*:**

2025-05-06 11:45:31 881

原创 OpenAI复刻了一个AI编程产品,还开源了~

Greg Brockman 表示,Codex CLI 仅是“一系列代码工具中的第一个”。可能OpenAI未来会构建一个覆盖开发全流程的 AI 工具矩阵,最终指向那个极具想象空间的“Agentic软件工程师”愿景。尽管 Codex CLI 处在早期,面临性能、成本、易用性等方面的问题,但开源的定位,意味着它将是一个快速进化且不容忽视的关键变量。

2025-04-18 11:17:45 1057

原创 一文搞懂大模型推理(FastAPI)

一、FastAPI*******什么是FastAPI?***********为什么选择FastAPI构建推理服务?**FastAPI 是一个基于 Python 的现代 Web 框架,专为构建高性能 API 而设计。以下是选择 FastAPI 构建推理服务的核心原因:***********二、推理服务***使用框架(如 FastAPI、Flask)将*本地部署模型封装为 RESTful API,提供推理服务*。****FastAPI如何构建大模型推理服务?

2025-04-15 13:52:36 982

原创 技术动态 | 大语言模型增强的知识表示学习

知识表示学习通过将知识事实映射到向量空间,实现将知识图谱中的符号化知识应用于下游任务。尽管在刻画知识图谱结构信息方面表现出较好效果,但知识图谱的稀疏性依然制约其性能。随着基于 Transformer 架构的大语言模型兴起,为利用文本信息缓解知识图谱中信息稀缺问题、增强知识表示学习能力提供新机遇。利用大语言模型增强的知识表示学习方法主要包括三种策略:基于编码器的方法,借助详细上下文信息进行表征;基于编码-解码器的方法,采用统一序列到序列模型实现全面编解码;基于解码器的方法,充分利用大规模语料中的丰富知识。

2025-04-15 13:51:15 857

原创 AI教父吴恩达:一文简单掌握AI Agent基石概念“反思Reflection”

*今天来分享一下吴恩达老师关于Reflection的内容。***Reflection(反思)则是Agent几大能力中的基石,使Agent能够分析自身的行动、行为和输出。Coursera的联合创始人|Landing.ai的创始人兼CEO|deeplearning创立者**Reflection(反思)**,是一种常见且实用的Agent设计范式,也是吴恩达推崇的4种Agent设计范式之一*。他将**AI 代理工作流分为四种设计*范式,*认为这些模式将在2024年推动重大进展。

2025-04-12 11:29:00 958

原创 国内外知名大模型及应用列表(2025)

这两年的时间里,AI界的进展主要集中在AIGC领域,AIGC就是人工智能生成内容(Artificial Intelligence Generative Content),也就是用自然语言让AI帮你创作各种各样的内容,比如图片、视频、音乐、文字等等。而创造这些内容的主要是XLM,包括截止目前,AIGC领域大半壁江山还是的。通用模型最擅长的是文字创作,其中最擅长的细分领域是(1)各种语言之间的翻译,(2)各种长篇大论的机器阅读并总结,(3)各种命题作文的撰写。2024年9月OpenAI发布了o系列。

2025-04-12 11:27:07 1759

原创 AI Agent大变天!谷歌开源A2A,一夜改变智能体交互

A2A是一种开放协议,为Agent提供了一种标准的交互方式,使它们能够相互协作,无论底层框架或供应商是什么。例如,一家大型电商公司使用了多种企业平台和服务。Atlassian 用于团队项目管理,Box 用于文件存储和共享,Salesforce 用于客户关系管理,Workday 用于人力资源管理。以前这些平台上的Agent无法自由通信。现在通过A2A协议,这些企业平台可以安全、自由地自动化交互数据。

2025-04-11 14:16:02 848

原创 如何构建医疗健康等复杂场景下的Agentic GraphRAG?

上周,Memgraph 举办了一次社区电话会议,讨论 AI 中一个令人兴奋的话题 — Agentic GraphRAG。如果您错过了,以下是我们的开发人员体验工程师 Ante Javor 对网络研讨会亮点的深入探讨。讨论涵盖了从 GraphRAG 的基础知识到 Memgraph 3.0 版的新功能,以及为什么代理对于推进 GraphRAG 至关重要的所有内容。让我们来分析一下。

2025-04-11 11:58:32 876

原创 RAG篇「数据集构建」保姆级教程来了!

检索增强生成(Retrieval Augmented Generation),简称 RAG。在构建RAG(Retrieval-Augmented Generation)的向量知识库时,数据的处理方式直接影响系统的性能和可靠性。不能随意塞入未经处理的数据,否则可能导致检索效果差、生成结果不准确甚至安全隐患。构建向量知识库数据集的基本步骤与微调数据集(见前篇)基本一致,但有以下注意强调事项。

2025-04-10 11:35:53 1276

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除