俞敏洪:笨有笨的好处

   中国有个成语叫“笨鸟先飞”,用来鼓励那些笨人。但人都是十月怀胎来到这个世界的,没有办法提前出生,所以没有办法先飞起来;开始上学时都是在同一个年龄,也没有太多的办法提前飞起来;等到发现自己比别人笨时,别人已经飞到前面去了,所以想先飞都不可能。那笨鸟能不能飞到目的地呢?答案是能,但需要有一个条件,那就是“笨鸟多飞”,你既然先飞不了,飞得比别人慢,那就比别人多飞一点,用更多的时间和努力来弥补自己先天的不足。
  在小学的时候,我就发现自己很笨了。小学语文老师要求所有学生把课文背出来,很多同学只要在课余时间把课文读几遍,就能够到老师面前去背诵了,背出来后,老师会在课文标题的上方用钢笔写上一个大大的“背”字,表明学生已经把课文背出来了,背出课文来的学生从此就可以万事大吉,不用再挨老师的白眼和折磨了。但我无论如何努力都不能在当天把课文背出来,通常要努力好几天或者一个星期,读上成千上百遍,才能够把课文背出来。老师的白眼没有少挨,但后来好处也渐渐显现出来,那些背诵速度很快的同学,又很快把背出来的课文忘记了。原来速度和遗忘成正比,背诵的速度越快,遗忘的速度也越快。而我由于要背无数遍才能够把课文烂熟于心,就不太容易忘记了。到期末考试的时候,很多同学又开始重新背课文,而我却依然能够把很多课文从头背到尾,不用复习太多就能够应对考试。
  有一个故事说雄鹰飞到金字塔的顶端只要一瞬间,而蜗牛爬到金字塔的顶端需要几年。同样的一件事一个目标,有些人一瞬间就能够完成,有些人却需要用一辈子的努力去实现。我们可以把那些依靠自己的天赋轻而易举就完成一个目标的人叫做天才,但这个世界上天才人物毕竟是少数,否则他们就不会被叫做天才了。事实是,这个世界并不是由天才所统治的,而是由那些经过艰苦卓绝的努力实现自己的目标并养成坚忍不拔的个性的人所统治的,我们可以把这些人叫做地才。地才就是脚踏实地,通过点点滴滴的努力实现自己目标的人才,很像是爬金字塔的蜗牛一样,需要超常的耐力和更多的时间。如果有一件事情摆在我的面前需要我去完成,我宁可选择更艰难的道路,就像蜗牛一样爬上金字塔而不是像雄鹰一样飞上金字塔,我的生命会因此留下更多的回忆和令人感动的瞬间。做一件事不需要努力,就像谈恋爱不需要追求,登山不需要攀爬一样,不会给我们的生命留下任何足以品尝的味道。当我们站在某一个点上回望过去,凡是能够珍藏心中的日子都是我们付出了汗水和艰辛的日子,是回忆起来让我们感动得泪流满面的日子。
  看过《阿甘正传》的人没有一个不被阿甘的生命轨迹所感动,阿甘是一个笨人,是一个傻人,却又成了人们心目中最成功的人。他因为被同学欺负不得不拼命奔跑,结果成了跑得最快的橄榄球队员,他傻得连自己的命都不要抢救战友,结果成了民族英雄,他一心练习乒乓球忘寝废食,结果打成了世界冠军,他努力捕虾一无所获但决不放弃,结果成了最著名的捕虾大王,哪怕他没有目的的环球跑步,也为他赢得了一大堆的追随者。我们可以得出的结论是,一个笨的人并不等于没有成就的人,他身上只要具备两样东西就能够像阿甘一样总有收获,这两样东西一是目标一是专心的坚持,而结果就是自然而来的,就算没有结果也有收获,因为你毕竟有了与众不同的经历。从北京到天津,聪明的人一定会向东走,在几个小时后就能够到达天津,愚笨的人可能会向西走,几年以后绕地球一圈走到了天津,但笨人并不一定吃亏,因为这几年中他实际上已经游历了全世界的山山水水,经历了人世间的风风雨雨;在万里苍茫之后再来看天津,其色彩和深度绝非几个小时后到达天津的人能够相比。
  因此,笨有笨的好处。意识到自己笨,正是聪明的开始;意识到自己因为笨所以要努力,是迈向成功的开始;意识到自己因为笨所以要专心超常的努力,是取得成就的开始;意识到自己因为笨不仅仅需要超常努力,还要心平气和给自己足够的时间和耐心,是成为天才的开始。
数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:11,787张图片 - 验证集:643张图片 - 测试集:431张图片 总计:12,861张真实场景图片 分类类别: - Elephant(象):陆生大型哺乳动物,包含多种自然环境中的活动姿态。 - Bear(熊):涵盖不同种类的熊科动物,包括静态及运动状态。 - Cheetah(猎豹):强调高速运动状态下的动态捕捉样本。 - Deer(鹿):包含林地和草原环境中的鹿群及个体样本。 - Fox(狐):涵盖多种狐狸品种的多样化行为模式。 标注格式: YOLO格式,包含标准化的归一化坐标标注,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面视角等多角度拍摄的野生动物图像,包含昼夜不同光照条件下的样本。 二、适用场景 生态监测系统开发: 支持构建自然保护区智能监测系统,实时检测野生动物活动轨迹并统计种群分布。 自动驾驶环境感知: 用于训练车辆视觉系统识别道路周边野生动物的能力,提升行车安全系数。 野生动物研究分析: 提供动物行为学研究的结构化数据支撑,支持物种活动模式分析与栖息地研究。 安防监控系统升级: 适用于农场、林区等场景的智能安防系统开发,精准识别潜在动物威胁。 三、数据集优势 多物种覆盖: 包含5类高关注度野生动物,覆盖陆地生态系统的关键指示物种。 场景多样性: 数据采集涵盖丛林、草原、山地等多种自然生境,增强模型泛化能力。 标注专业性: 经动物学专家校验的精准边界框标注,确保目标定位与分类准确性。 任务适配性: 原生YOLO格式支持快速迁移至目标检测、行为分析、密度估计等衍生任务。 规模优势: 超万级标注样本量,有效支撑深度神经网络的特征学习需求。
数据集介绍:STAS目标检测数据集 数据集名称:STAS目标检测数据集 图片数量: - 训练集:733张 - 验证集:211张 - 测试集:105张 总计:1,049张图像 分类类别: - STAS:特定场景下的目标检测类别(具体语义需结合业务背景) - stas:小写形式分类标签,与STAS形成多粒度标注层级 标注格式: YOLO格式,包含归一化中心坐标及边界框尺寸,可直接用于目标检测模型训练。 数据特性: 标注框尺寸分布多样,涵盖大尺度物体(如宽度占比8.5%、高度占比20.8%)到小目标(如宽度占比2.1%、高度占比5.7%),适配多尺度检测需求。 航空影像分析: 适用于无人机/卫星图像中的目标定位与识别,支持农业监测、环境评估等场景。 工业检测系统: 可训练PCB板缺陷检测、传送带物料识别等工业视觉模型,框体标注适配机械臂抓取坐标计算。 智慧城市应用: 支持交通监控、基础设施检测等城市管理场景中的多目标追踪任务。 学术研究: 提供标准化YOLO格式数据,适用于目标检测领域的模型对比实验与算法创新研究。 标注质量突出: 边界框覆盖密集场景(单图最高达7个实例),包含部分重叠目标标注,考验模型鲁棒性。 空间分布全面: 标注框位置覆盖图像中心区(如坐标0.39,0.33)到边缘区域(如坐标0.95,0.85),提升模型全图检测能力。 工程友好性: 原生适配YOLOv5/v8等主流框架,提供标准化train/val/test划分,支持即插即用。 场景适配性强: 标注目标宽高比差异显著(从接近正方形到细长形态),满足不同行业对物体比例的检测需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值