目录列表:
文章目录
定角定角平分线模型探究
问题提出
如图 , 在△ A B C 中 , ∠ B A C = 2 α ° , A D 为 ∠ B A C 的角平分线 , 且 A D = n , 请探究 A B + A C 的最小值 . 如图,在△ABC中,∠BAC = 2\alpha°,AD为∠BAC的角平分线,且AD = n,请探究AB+AC的最小值. 如图,在△ABC中,∠BAC=2α°,AD为∠BAC的角平分线,且AD=n,请探究AB+AC的最小值.
思路解决
如图
,
过点
D
做
D
E
⊥
A
B
交
A
B
于点
E
,
做
D
F
⊥
A
C
交于点
F
.
在线段
A
F
上做一点
G
,
使得
F
G
=
B
E
.
如图,过点D做DE⊥AB交AB于点E,做DF⊥AC交于点F.在线段AF上做一点G,使得FG=BE.
如图,过点D做DE⊥AB交AB于点E,做DF⊥AC交于点F.在线段AF上做一点G,使得FG=BE.
因为 A D 平分 ∠ B A C 因为AD平分∠BAC 因为AD平分∠BAC
所以 ∠ B A D = ∠ C A D = 1 2 ∠ B A C = α ° , D E = D F 所以∠BAD=∠CAD= \frac{1}{2}∠BAC=\alpha°,DE=DF 所以∠BAD=∠CAD=21∠BAC=α°,DE=DF
所以在△ B D E 与△ G D F 中 { B E = F G ∠ B A D = ∠ C A D D E = D F 所以△ B D E ≅ △ G D F 所以 ∠ B = ∠ D G F , ∠ B D E = ∠ G D F ∠ E D F = 360 ° − ∠ D E A − ∠ D F A − ∠ B A C = 180 ° − 2 α ° ∠ C D G = ∠ G D F + ∠ C D F = ∠ B D E + ∠ C D F = 180 ° − ∠ E D F = 2 α ° 所以在△BDE与△GDF中\\ \left\{ \begin{aligned} &BE=FG \\ &∠BAD=∠CAD \\ &DE=DF \end{aligned} \right.\\ 所以△BDE\cong△GDF \\ 所以∠B = ∠DGF,∠BDE=∠GDF\\ ∠EDF=360°-∠DEA-∠DFA-∠BAC=180°-2\alpha°\\ ∠CDG=∠GDF+∠CDF=∠BDE+∠CDF=180°-∠EDF=2\alpha° 所以在△BDE与△GDF中⎩ ⎨ ⎧BE=FG∠BAD=∠CADDE=DF所以△BDE≅△GDF所以∠B=∠DGF,∠BDE=∠GDF∠EDF=360°−∠DEA−∠DFA−∠BAC=180°−2α°∠CDG=∠GDF+∠CDF=∠BDE+∠CDF=180°−∠EDF=2α°
因为 A B + A C = ( A E + E B ) + ( A F + F C ) = A E + A F + F G + C F = A E + A F + C G 所以 A E + A F + C G 的最小值即位 A B + A C 的最小值 又因为 ∠ B A D = ∠ C A D = 1 2 ∠ B A C = α ° , A D = n 所以 D F = A D sin ∠ C A D = n sin α ° , A E = A D cos ∠ B A D = n cos α ° , A F = A D cos ∠ C A D = n cos α ° 所以 A E + A F + C G = n cos α ° + n cos α ° + C G = 2 n cos α ° + C G 因为AB+AC=(AE+EB)+(AF+FC) \\=AE+AF+FG+CF \\=AE+AF+CG \\所以AE+AF+CG的最小值即位AB+AC的最小值 \\又因为∠BAD=∠CAD= \frac{1}{2}∠BAC=\alpha°,AD=n \\所以\\DF=AD\sin∠CAD=n\sin\alpha°,\\AE=AD\cos∠BAD=n\cos\alpha°,\\AF=AD\cos∠CAD=n\cos\alpha° \\所以AE+AF+CG=n\cos\alpha° + n\cos\alpha° + CG = 2n\cos\alpha°+CG 因为AB+AC=(AE+EB)+(AF+FC)=AE+AF+FG+CF=AE+AF+CG所以AE+AF+CG的最小值即位AB+AC的最小值又因为∠BAD=∠CAD=21∠BAC=α°,AD=n所以DF=ADsin∠CAD=nsinα°,AE=ADcos∠BAD=ncosα°,AF=ADcos∠CAD=ncosα°所以AE+AF+CG=ncosα°+ncosα°+CG=2ncosα°+CG
易知当
C
G
取最小值时
,
A
E
+
A
F
+
C
G
有最小值
.
我们不难发现
,
三角形
C
D
G
是定角定高模型
(
D
F
为定值且
∠
C
D
G
为定值
)
,
接下来可以这样求得
C
G
的最小值
:
易知当CG取最小值时,AE+AF+CG有最小值. \\\\我们不难发现,三角形CDG是定角定高模型(DF为定值且∠CDG为定值),接下来可以这样求得CG的最小值:
易知当CG取最小值时,AE+AF+CG有最小值.我们不难发现,三角形CDG是定角定高模型(DF为定值且∠CDG为定值),接下来可以这样求得CG的最小值:
如图 , 做△ C D G 的外接圆 ⨀ O , 设半径长为 r , 连接 D O , G O , C O . 过点 O 做 O H ⊥ A C 交 A C 于点 H . 易知 ∠ C O G = 2 ∠ C D G = 4 α ° , O H 平分 ∠ C O G 且 O H 平分 C G 所以 ∠ G O H = ∠ C O H = 1 2 ∠ C O G = 2 α ° , O H = O G cos ∠ G O H = r cos 2 α ° , G H = C H = 1 2 C G = O G sin ∠ G O H = r sin 2 α ° 所以 C G = 2 G H = 2 r sin 2 α ° 易知当 ⨀ o 的半径最小时 , C G 有最小值 如图 , 易知 O D + O H ≥ D F 即 r + r cos 2 α ° ≥ n sin α ° 解得 r ≥ n sin α ° cos 2 α ° + 1 所以 C G = 2 r sin 2 α ° = 2 n ⋅ sin α ° ⋅ sin 2 α ° cos 2 α ° + 1 如图,做△CDG的外接圆\bigodot O,设半径长为r,\\连接DO,GO,CO.过点O做OH⊥AC交AC于点H.\\ \\易知∠COG=2∠CDG=4\alpha°,\\ OH平分∠COG且OH平分CG\\ 所以∠GOH=∠COH= \frac {1}{2}∠COG= 2\alpha°,\\ OH = OG\cos∠GOH = r\cos2\alpha°,\\ GH=CH= \frac {1}{2}CG = OG\sin∠GOH = r\sin2\alpha°\\ 所以CG = 2GH = 2r\sin2\alpha°\\ 易知当\bigodot o的半径最小时,CG有最小值\\\\ 如图,易知OD+OH \geq DF\\ 即r + r\cos2\alpha° \geq n\sin\alpha°\\ 解得 r \geq \frac {n\sin\alpha°}{\cos2\alpha°+1}\\ 所以CG = 2r\sin2\alpha°= \frac {2n\cdot\sin\alpha°\cdot\sin2\alpha°}{\cos2\alpha°+1} 如图,做△CDG的外接圆⨀O,设半径长为r,连接DO,GO,CO.过点O做OH⊥AC交AC于点H.易知∠COG=2∠CDG=4α°,OH平分∠COG且OH平分CG所以∠GOH=∠COH=21∠COG=2α°,OH=OGcos∠GOH=rcos2α°,GH=CH=21CG=OGsin∠GOH=rsin2α°所以CG=2GH=2rsin2α°易知当⨀o的半径最小时,CG有最小值如图,易知OD+OH≥DF即r+rcos2α°≥nsinα°解得r≥cos2α°+1nsinα°所以CG=2rsin2α°=cos2α°+12n⋅sinα°⋅sin2α°
然后我们可以化简 C G 然后我们可以化简CG 然后我们可以化简CG
C G = 2 n ⋅ sin α ° ⋅ sin 2 α ° cos 2 α ° + 1 = 2 n ⋅ sin α ° ⋅ 2 sin α ° cos α ° 2 cos 2 α ° − 1 + 1 = 4 n ⋅ sin 2 α ° ⋅ cos α ° 2 cos 2 α ° = 2 n sin 2 α ° cos α ° CG= \frac {2n\cdot\sin\alpha°\cdot\sin2\alpha°}{\cos2\alpha°+1} =\frac {2n \cdot \sin\alpha° \cdot 2\sin\alpha°\cos\alpha°} {2\cos^2\alpha°-1+1} =\frac {4n \cdot \sin^2\alpha° \cdot \cos\alpha°} {2\cos^2\alpha°}\\ =\frac {2n \sin^2\alpha°} {\cos\alpha°} CG=cos2α°+12n⋅sinα°⋅sin2α°=2cos2α°−1+12n⋅sinα°⋅2sinα°cosα°=2cos2α°4n⋅sin2α°⋅cosα°=cosα°2nsin2α°
所以当 A E + A F + C G 最小时 : A E + A F + C G = 2 n cos α ° + C G = 2 n cos α ° + 2 n sin 2 α ° cos α ° = 2 n cos 2 α ° cos α ° + 2 n sin 2 α ° cos α ° = 2 n cos 2 α ° + 2 n sin 2 α ° cos α ° = 2 n ( cos 2 α ° + sin 2 α ° ) cos α ° = 2 n ⋅ 1 cos α ° = 2 n cos α ° 所以当AE+AF+CG最小时:\\ AE+AF+CG=2n\cos\alpha°+CG = 2n\cos\alpha°+\frac {2n \sin^2\alpha°}{\cos\alpha°}\\ =\frac {2n\cos^2\alpha°}{\cos\alpha°}+\frac {2n\sin^2\alpha°}{\cos\alpha°}\\ =\frac {2n\cos^2\alpha°+2n\sin^2\alpha°}{\cos\alpha°}\\ =\frac {2n(\cos^2\alpha°+\sin^2\alpha°)}{\cos\alpha°}\\ =\frac {2n \cdot 1}{\cos\alpha°}\\ = \frac {2n}{\cos\alpha°} 所以当AE+AF+CG最小时:AE+AF+CG=2ncosα°+CG=2ncosα°+cosα°2nsin2α°=cosα°2ncos2α°+cosα°2nsin2α°=cosα°2ncos2α°+2nsin2α°=cosα°2n(cos2α°+sin2α°)=cosα°2n⋅1=cosα°2n
所以 , A B + A C 最小时 , A B + A C = A E + A F + C G = 2 n cos α ° 即 A B + A C 的最小值为 2 n cos α ° 所以,AB+AC最小时,\\AB+AC=AE+AF+CG=\frac {2n}{\cos\alpha°}\\ 即AB+AC的最小值为\frac {2n}{\cos\alpha°} 所以,AB+AC最小时,AB+AC=AE+AF+CG=cosα°2n即AB+AC的最小值为cosα°2n