定角定角平分线模型探究]

目录列表:

定角定角平分线模型探究

问题提出

如图 , 在△ A B C 中 , ∠ B A C = 2 α ° , A D 为 ∠ B A C 的角平分线 , 且 A D = n , 请探究 A B + A C 的最小值 . 如图,在△ABC中,∠BAC = 2\alpha°,AD为∠BAC的角平分线,且AD = n,请探究AB+AC的最小值. 如图,ABC,BAC=2α°,ADBAC的角平分线,AD=n,请探究AB+AC的最小值.

在这里插入图片描述

思路解决


如图 , 过点 D 做 D E ⊥ A B 交 A B 于点 E , 做 D F ⊥ A C 交于点 F . 在线段 A F 上做一点 G , 使得 F G = B E . 如图,过点D做DE⊥AB交AB于点E,做DF⊥AC交于点F.在线段AF上做一点G,使得FG=BE. 如图,过点DDEABAB于点E,DFAC交于点F.在线段AF上做一点G,使得FG=BE.

在这里插入图片描述

因为 A D 平分 ∠ B A C 因为AD平分∠BAC 因为AD平分BAC

所以 ∠ B A D = ∠ C A D = 1 2 ∠ B A C = α ° , D E = D F 所以∠BAD=∠CAD= \frac{1}{2}∠BAC=\alpha°,DE=DF 所以BAD=CAD=21BAC=α°,DE=DF

所以在△ B D E 与△ G D F 中 { B E = F G ∠ B A D = ∠ C A D D E = D F 所以△ B D E ≅ △ G D F 所以 ∠ B = ∠ D G F , ∠ B D E = ∠ G D F ∠ E D F = 360 ° − ∠ D E A − ∠ D F A − ∠ B A C = 180 ° − 2 α ° ∠ C D G = ∠ G D F + ∠ C D F = ∠ B D E + ∠ C D F = 180 ° − ∠ E D F = 2 α ° 所以在△BDE与△GDF中\\ \left\{ \begin{aligned} &BE=FG \\ &∠BAD=∠CAD \\ &DE=DF \end{aligned} \right.\\ 所以△BDE\cong△GDF \\ 所以∠B = ∠DGF,∠BDE=∠GDF\\ ∠EDF=360°-∠DEA-∠DFA-∠BAC=180°-2\alpha°\\ ∠CDG=∠GDF+∠CDF=∠BDE+∠CDF=180°-∠EDF=2\alpha° 所以在BDEGDF BE=FGBAD=CADDE=DF所以BDEGDF所以B=DGF,BDE=GDFEDF=360°DEADFABAC=180°2α°CDG=GDF+CDF=BDE+CDF=180°EDF=2α°

因为 A B + A C = ( A E + E B ) + ( A F + F C ) = A E + A F + F G + C F = A E + A F + C G 所以 A E + A F + C G 的最小值即位 A B + A C 的最小值 又因为 ∠ B A D = ∠ C A D = 1 2 ∠ B A C = α ° , A D = n 所以 D F = A D sin ⁡ ∠ C A D = n sin ⁡ α ° , A E = A D cos ⁡ ∠ B A D = n cos ⁡ α ° , A F = A D cos ⁡ ∠ C A D = n cos ⁡ α ° 所以 A E + A F + C G = n cos ⁡ α ° + n cos ⁡ α ° + C G = 2 n cos ⁡ α ° + C G 因为AB+AC=(AE+EB)+(AF+FC) \\=AE+AF+FG+CF \\=AE+AF+CG \\所以AE+AF+CG的最小值即位AB+AC的最小值 \\又因为∠BAD=∠CAD= \frac{1}{2}∠BAC=\alpha°,AD=n \\所以\\DF=AD\sin∠CAD=n\sin\alpha°,\\AE=AD\cos∠BAD=n\cos\alpha°,\\AF=AD\cos∠CAD=n\cos\alpha° \\所以AE+AF+CG=n\cos\alpha° + n\cos\alpha° + CG = 2n\cos\alpha°+CG 因为AB+AC=(AE+EB)+(AF+FC)=AE+AF+FG+CF=AE+AF+CG所以AE+AF+CG的最小值即位AB+AC的最小值又因为BAD=CAD=21BAC=α°,AD=n所以DF=ADsinCAD=nsinα°,AE=ADcosBAD=ncosα°,AF=ADcosCAD=ncosα°所以AE+AF+CG=ncosα°+ncosα°+CG=2ncosα°+CG

易知当 C G 取最小值时 , A E + A F + C G 有最小值 . 我们不难发现 , 三角形 C D G 是定角定高模型 ( D F 为定值且 ∠ C D G 为定值 ) , 接下来可以这样求得 C G 的最小值 : 易知当CG取最小值时,AE+AF+CG有最小值. \\\\我们不难发现,三角形CDG是定角定高模型(DF为定值且∠CDG为定值),接下来可以这样求得CG的最小值: 易知当CG取最小值时,AE+AF+CG有最小值.我们不难发现,三角形CDG是定角定高模型(DF为定值且CDG为定值),接下来可以这样求得CG的最小值:
在这里插入图片描述

如图 , 做△ C D G 的外接圆 ⨀ O , 设半径长为 r , 连接 D O , G O , C O . 过点 O 做 O H ⊥ A C 交 A C 于点 H . 易知 ∠ C O G = 2 ∠ C D G = 4 α ° , O H 平分 ∠ C O G 且 O H 平分 C G 所以 ∠ G O H = ∠ C O H = 1 2 ∠ C O G = 2 α ° , O H = O G cos ⁡ ∠ G O H = r cos ⁡ 2 α ° , G H = C H = 1 2 C G = O G sin ⁡ ∠ G O H = r sin ⁡ 2 α ° 所以 C G = 2 G H = 2 r sin ⁡ 2 α ° 易知当 ⨀ o 的半径最小时 , C G 有最小值 如图 , 易知 O D + O H ≥ D F 即 r + r cos ⁡ 2 α ° ≥ n sin ⁡ α ° 解得 r ≥ n sin ⁡ α ° cos ⁡ 2 α ° + 1 所以 C G = 2 r sin ⁡ 2 α ° = 2 n ⋅ sin ⁡ α ° ⋅ sin ⁡ 2 α ° cos ⁡ 2 α ° + 1 如图,做△CDG的外接圆\bigodot O,设半径长为r,\\连接DO,GO,CO.过点O做OH⊥AC交AC于点H.\\ \\易知∠COG=2∠CDG=4\alpha°,\\ OH平分∠COG且OH平分CG\\ 所以∠GOH=∠COH= \frac {1}{2}∠COG= 2\alpha°,\\ OH = OG\cos∠GOH = r\cos2\alpha°,\\ GH=CH= \frac {1}{2}CG = OG\sin∠GOH = r\sin2\alpha°\\ 所以CG = 2GH = 2r\sin2\alpha°\\ 易知当\bigodot o的半径最小时,CG有最小值\\\\ 如图,易知OD+OH \geq DF\\ 即r + r\cos2\alpha° \geq n\sin\alpha°\\ 解得 r \geq \frac {n\sin\alpha°}{\cos2\alpha°+1}\\ 所以CG = 2r\sin2\alpha°= \frac {2n\cdot\sin\alpha°\cdot\sin2\alpha°}{\cos2\alpha°+1} 如图,CDG的外接圆O,设半径长为r,连接DO,GO,CO.过点OOHACAC于点H.易知COG=2∠CDG=4α°,OH平分COGOH平分CG所以GOH=COH=21COG=2α°,OH=OGcosGOH=rcos2α°,GH=CH=21CG=OGsinGOH=rsin2α°所以CG=2GH=2rsin2α°易知当o的半径最小时,CG有最小值如图,易知OD+OHDFr+rcos2α°nsinα°解得rcos2α°+1nsinα°所以CG=2rsin2α°=cos2α°+12nsinα°sin2α°

然后我们可以化简 C G 然后我们可以化简CG 然后我们可以化简CG

C G = 2 n ⋅ sin ⁡ α ° ⋅ sin ⁡ 2 α ° cos ⁡ 2 α ° + 1 = 2 n ⋅ sin ⁡ α ° ⋅ 2 sin ⁡ α ° cos ⁡ α ° 2 cos ⁡ 2 α ° − 1 + 1 = 4 n ⋅ sin ⁡ 2 α ° ⋅ cos ⁡ α ° 2 cos ⁡ 2 α ° = 2 n sin ⁡ 2 α ° cos ⁡ α ° CG= \frac {2n\cdot\sin\alpha°\cdot\sin2\alpha°}{\cos2\alpha°+1} =\frac {2n \cdot \sin\alpha° \cdot 2\sin\alpha°\cos\alpha°} {2\cos^2\alpha°-1+1} =\frac {4n \cdot \sin^2\alpha° \cdot \cos\alpha°} {2\cos^2\alpha°}\\ =\frac {2n \sin^2\alpha°} {\cos\alpha°} CG=cos2α°+12nsinα°sin2α°=2cos2α°1+12nsinα°2sinα°cosα°=2cos2α°4nsin2α°cosα°=cosα°2nsin2α°

所以当 A E + A F + C G 最小时 : A E + A F + C G = 2 n cos ⁡ α ° + C G = 2 n cos ⁡ α ° + 2 n sin ⁡ 2 α ° cos ⁡ α ° = 2 n cos ⁡ 2 α ° cos ⁡ α ° + 2 n sin ⁡ 2 α ° cos ⁡ α ° = 2 n cos ⁡ 2 α ° + 2 n sin ⁡ 2 α ° cos ⁡ α ° = 2 n ( cos ⁡ 2 α ° + sin ⁡ 2 α ° ) cos ⁡ α ° = 2 n ⋅ 1 cos ⁡ α ° = 2 n cos ⁡ α ° 所以当AE+AF+CG最小时:\\ AE+AF+CG=2n\cos\alpha°+CG = 2n\cos\alpha°+\frac {2n \sin^2\alpha°}{\cos\alpha°}\\ =\frac {2n\cos^2\alpha°}{\cos\alpha°}+\frac {2n\sin^2\alpha°}{\cos\alpha°}\\ =\frac {2n\cos^2\alpha°+2n\sin^2\alpha°}{\cos\alpha°}\\ =\frac {2n(\cos^2\alpha°+\sin^2\alpha°)}{\cos\alpha°}\\ =\frac {2n \cdot 1}{\cos\alpha°}\\ = \frac {2n}{\cos\alpha°} 所以当AE+AF+CG最小时:AE+AF+CG=2ncosα°+CG=2ncosα°+cosα°2nsin2α°=cosα°2ncos2α°+cosα°2nsin2α°=cosα°2ncos2α°+2nsin2α°=cosα°2n(cos2α°+sin2α°)=cosα°2n1=cosα°2n

所以 , A B + A C 最小时 , A B + A C = A E + A F + C G = 2 n cos ⁡ α ° 即 A B + A C 的最小值为 2 n cos ⁡ α ° 所以,AB+AC最小时,\\AB+AC=AE+AF+CG=\frac {2n}{\cos\alpha°}\\ 即AB+AC的最小值为\frac {2n}{\cos\alpha°} 所以,AB+AC最小时,AB+AC=AE+AF+CG=cosα°2nAB+AC的最小值为cosα°2n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值