算法-图BFS-单词接龙

算法-图BFS-单词接龙

1 题目概述

1.1 题目出处

https://leetcode-cn.com/problems/word-ladder/

1.2 题目描述

给定两个单词(beginWord 和 endWord)和一个字典,找到从 beginWord 到 endWord 的最短转换序列的长度。转换需遵循如下规则:

每次转换只能改变一个字母。
转换过程中的中间单词必须是字典中的单词。
说明:

如果不存在这样的转换序列,返回 0。
所有单词具有相同的长度。
所有单词只由小写字母组成。
字典中不存在重复的单词。
你可以假设 beginWord 和 endWord 是非空的,且二者不相同。
示例 1:

输入:
beginWord = “hit”,
endWord = “cog”,
wordList = [“hot”,“dot”,“dog”,“lot”,“log”,“cog”]

输出: 5

解释: 一个最短转换序列是 “hit” -> “hot” -> “dot” -> “dog” -> “cog”,
返回它的长度 5。
示例 2:

输入:
beginWord = “hit”
endWord = “cog”
wordList = [“hot”,“dot”,“dog”,“lot”,“log”]

输出: 0

解释: endWord “cog” 不在字典中,所以无法进行转换。

2 图-BFS

2.1 思路

将各单词看做无向图(因为A能转换为B,则B肯定也能转换为A),且beginWord看做图的BFS起点。只要两个单词可转变,则存在一条边。

可转变的含义是,两个单词之间有且仅有一个字符不同!

要求到达endWord的最短路径,则可从起点beginWord开始bfs,只要到达endWord肯定是最短路径!

2.2 代码

class Solution {
    public int ladderLength(String beginWord, String endWord, List<String> wordList) {
        boolean find = false;
        Map<String, List<String>> pathMap = new HashMap<>();
		
		// pathMap中key为单词,value为该单词能直接转换的字符串组成的list
        pathMap.put(beginWord, new ArrayList<String>());

        // 1. 首先判断字典中是否包含endWord,
        // 2. 以及顺便初始化pathMap和beginWord可转变节点
        for(int i = 0; i < wordList.size(); i++){
            if(endWord.equals(wordList.get(i))){
                find = true;
            }
            pathMap.put(wordList.get(i), new ArrayList<String>());
            if(connect(beginWord, wordList.get(i))){
                pathMap.get(beginWord).add(wordList.get(i));
            }
        }
        // 3. 如果endWord不在wordList中,则直接表示无法转变,结果返回
        if(!find){
            return 0;
        }
        // 到这里说明endWord在wordList中,需要继续bfs判断是否beginWord->endWord

        // 4. 将能直接转变的单词联通成图
        for(int i = 0; i < wordList.size(); i++){
            for(int j = i + 1; j < wordList.size(); j++){
                if(connect(wordList.get(i), wordList.get(j))){
                    pathMap.get(wordList.get(i)).add(wordList.get(j));
                    pathMap.get(wordList.get(j)).add(wordList.get(i));
                }
            }
        }
        
        // 用于bfs的队列
        LinkedList<String> queue = new LinkedList<>();
        // 已访问过的字符串
        Set<String> visited = new HashSet<>();
        // 将开始字符串添加到队列头部
        // 以#号分隔,左半部分是单词,右半部分是当前路径长度
        queue.add(beginWord + "#" + 1);
        
        // 5.开始BFS遍历图
        while(!queue.isEmpty()){
            String[] oriStr = queue.poll().split("#");
            String str = oriStr[0];
            if(endWord.equals(str)){
                // bfs时,遇到endWord时的路径肯定最短
                return Integer.parseInt(oriStr[1]);
            }
            // 下一个bfs节点,路径长度+1
            int nextDepth = Integer.parseInt(oriStr[1]) + 1;
            List<String> connectStrList = pathMap.get(str);
            for(String connectStr : connectStrList){
                if(!visited.contains(connectStr)){
                    visited.add(connectStr);
                    queue.add(connectStr + "#" + nextDepth);
                }
            }
        }
        return 0;
    }
    // 用于判断两个字符串是否可直接转变
    private boolean connect(String left, String right){
        int cnt = 0;
        for(int i = 0; i < left.length(); i++){
            if(left.charAt(i) != right.charAt(i)){
                if(++cnt == 2){
                    return false;
                }
            }
        }
        if(cnt == 1){
            return true;
        }else{
            return false;
        }
    }
}

2.3 时间复杂度

在这里插入图片描述
O(N^2 * K)

  • N为单词总数,K为单词长度,O(N*K)初始化 + O(N^2 * K)建立图 + O(N)遍历图

2.4 空间复杂度

最坏O(N^2 * K)

3 图-双端BFS

3.1 思路

前面BFS方法固然好,但时间太慢。可以采用双端BFS,每次从节点少(分支少)的一端遍历,加快找到连通的路径。

3.2 代码

class Solution {
    // 已访问过的字符串
    private Set<String> visited = new HashSet<>();
    private Map<String, List<String>> pathMap = new HashMap<>();
    public int ladderLength(String beginWord, String endWord, List<String> wordList) {
        boolean find = false;

        pathMap.put(beginWord, new ArrayList<String>());

        // 首先判断字典中是否包含endWord,以及顺便初始化pathMap和beginWord可转变节点
        for(int i = 0; i < wordList.size(); i++){
            if(endWord.equals(wordList.get(i))){
                find = true;
            }
            pathMap.put(wordList.get(i), new ArrayList<String>());
            if(connect(beginWord, wordList.get(i))){
                pathMap.get(beginWord).add(wordList.get(i));
            }
        }
        if(!find){
            return 0;
        }

        // 将能直接转变的联通成图
        for(int i = 0; i < wordList.size(); i++){
            for(int j = i + 1; j < wordList.size(); j++){
                if(connect(wordList.get(i), wordList.get(j))){
                    pathMap.get(wordList.get(i)).add(wordList.get(j));
                    pathMap.get(wordList.get(j)).add(wordList.get(i));
                }
            }
        }

        // 用于bfs
        Set<String> start = new HashSet<>();
        // 将开始字符串添加到起点队列
        start.add(beginWord);

        Set<String> end = new HashSet<>();
        // 将结束字符串添加到终点队列
        end.add(endWord);

        // 开始BFS遍历图
        return bfs(start, end, 2);
    }
    private int bfs(Set<String> start, Set<String> end, int depth){
        if(start.size() == 0 || end.size() == 0){
            return 0;
        }
        // 用来存放另一端待BFS遍历元素
        HashSet<String> next = new HashSet<>();
        for(String str : start){
            visited.add(str);
            List<String> connectStrList = pathMap.get(str);
            for(String connectStr : connectStrList){
                if(!visited.contains(connectStr)){
                    if(end.contains(connectStr)){
                        // bfs时,end节点包含该str时,说明可达终点,此时路径肯定最短
                        return depth;
                    }
                    next.add(connectStr);
                }
            }
        }
        // 每次从较少元素的一侧开始遍历
        if(next.size() > end.size()){
            return bfs(end, next, ++depth);
        }else{
            return bfs(next, end, ++depth);
        }
    }
    // 用于判断两个字符串是否可直接转变
    private boolean connect(String left, String right){
        int cnt = 0;
        for(int i = 0; i < left.length(); i++){
            if(left.charAt(i) != right.charAt(i)){
                if(++cnt == 2){
                    return false;
                }
            }
        }
        if(cnt == 1){
            return true;
        }else{
            return false;
        }
    }
}

3.3 时间复杂度

在这里插入图片描述
O(N^2 * K)

  • N为单词总数,K为单词长度,O(N*K)初始化 + O(N^2 * K)建立图 + O(N)遍历图

3.4 空间复杂度

最坏O(N^2 * K)

4 图-双端BFS-优化

4.1 思路

前面双端BFS方法固然好,但时间依然太慢。主要是前面构造pathMap花了太多时间。

我们转变下思路,不再按位挨个比较构造pathMap,而是构建一个转换Map,Key为如abc*de,value为List,值如[abcfde, abcgde, abchde]等。所以一个单词可以对应很多个这样的key, value。

在判断时,还是双端bfs,不过判断可转换节点时不再按位遍历当前字符串的每个字符,而是替换为’#'后查找同源其他字符串。

4.2 代码

class Solution {
    // 已访问过的字符串
    private Set<String> unvisited = null;
    private Map<String, List<String>> pathMap = new HashMap<>();

    private void generateRegex(String str){
        char[] cs = str.toCharArray();
        for(int j = 0; j < cs.length; j++){
            char tmp = cs[j];
            cs[j] = '#';
            String regexStr = new String(cs);
            List<String> strList = pathMap.get(regexStr);
            if(strList == null){
                strList = new ArrayList<>();
                pathMap.put(regexStr, strList);
            }
            strList.add(str);
            cs[j] = tmp;
        }
    }
    public int ladderLength(String beginWord, String endWord, List<String> wordList) {
        unvisited = new HashSet<>(wordList);
        // 首先判断字典中是否包含endWord
        if(!unvisited.contains(endWord)){
            return 0;
        }
		
		// 构建beginWord可转变节点组成的pathMap
        generateRegex(beginWord);
        // 构建路径节点可转变节点组成的pathMap
        for(int i = 0; i < wordList.size(); i++){
            generateRegex(wordList.get(i));
        }

        // 用于bfs
        Set<String> start = new HashSet<>();
        // 将开始字符串添加到队列头部
        start.add(beginWord);

        Set<String> end = new HashSet<>();
        end.add(endWord);

        // 开始BFS遍历图
        return bfs(start, end, 2);
    }
    private int bfs(Set<String> start, Set<String> end, int depth){
        if(start.size() == 0 || end.size() == 0){
            return 0;
        }
        // 标记start集里的所有元素已访问过,避免成环重复访问
        unvisited.removeAll(start);
        HashSet<String> next = new HashSet<>();
        for(String str : start){
            char[] cs = str.toCharArray();
            // 将字符串转为char[],然后按位遍历出每一个regex对应的list
            for(int i = 0; i < str.length(); i++){
                char tmp = cs[i];
                cs[i] = '#';
                String regexStr = new String(cs);
                // 得到该regex对应的所有StrList
                List<String> connectStrList = pathMap.get(regexStr);
                for(String connectStr : connectStrList){
                    if(unvisited.contains(connectStr)){
                        if(end.contains(connectStr)){
                            // bfs时,end节点包含该str时,说明可达终点,此时路径肯定最短
                            return depth;
                        }
                        next.add(connectStr);
                    }
                }
                cs[i] = tmp;
            }
        }
        if(next.size() > end.size()){
            return bfs(end, next, ++depth);
        }else{
            return bfs(next, end, ++depth);
        }
    }
}

4.3 时间复杂度

  • O(N * K)
    N为单词总数,K为单词长度,O(N * K)构建pathMap + O(N * K )查找
    在这里插入图片描述
    这次优化很大!

4.4 空间复杂度

最坏O(N * K * 26) => O(N * K)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值