算法-图BFS-单词接龙
1 题目概述
1.1 题目出处
https://leetcode-cn.com/problems/word-ladder/
1.2 题目描述
给定两个单词(beginWord 和 endWord)和一个字典,找到从 beginWord 到 endWord 的最短转换序列的长度。转换需遵循如下规则:
每次转换只能改变一个字母。
转换过程中的中间单词必须是字典中的单词。
说明:
如果不存在这样的转换序列,返回 0。
所有单词具有相同的长度。
所有单词只由小写字母组成。
字典中不存在重复的单词。
你可以假设 beginWord 和 endWord 是非空的,且二者不相同。
示例 1:
输入:
beginWord = “hit”,
endWord = “cog”,
wordList = [“hot”,“dot”,“dog”,“lot”,“log”,“cog”]
输出: 5
解释: 一个最短转换序列是 “hit” -> “hot” -> “dot” -> “dog” -> “cog”,
返回它的长度 5。
示例 2:
输入:
beginWord = “hit”
endWord = “cog”
wordList = [“hot”,“dot”,“dog”,“lot”,“log”]
输出: 0
解释: endWord “cog” 不在字典中,所以无法进行转换。
2 图-BFS
2.1 思路
将各单词看做无向图(因为A能转换为B,则B肯定也能转换为A),且beginWord看做图的BFS起点。只要两个单词可转变,则存在一条边。
可转变的含义是,两个单词之间有且仅有一个字符不同!
要求到达endWord的最短路径,则可从起点beginWord开始bfs,只要到达endWord肯定是最短路径!
2.2 代码
class Solution {
public int ladderLength(String beginWord, String endWord, List<String> wordList) {
boolean find = false;
Map<String, List<String>> pathMap = new HashMap<>();
// pathMap中key为单词,value为该单词能直接转换的字符串组成的list
pathMap.put(beginWord, new ArrayList<String>());
// 1. 首先判断字典中是否包含endWord,
// 2. 以及顺便初始化pathMap和beginWord可转变节点
for(int i = 0; i < wordList.size(); i++){
if(endWord.equals(wordList.get(i))){
find = true;
}
pathMap.put(wordList.get(i), new ArrayList<String>());
if(connect(beginWord, wordList.get(i))){
pathMap.get(beginWord).add(wordList.get(i));
}
}
// 3. 如果endWord不在wordList中,则直接表示无法转变,结果返回
if(!find){
return 0;
}
// 到这里说明endWord在wordList中,需要继续bfs判断是否beginWord->endWord
// 4. 将能直接转变的单词联通成图
for(int i = 0; i < wordList.size(); i++){
for(int j = i + 1; j < wordList.size(); j++){
if(connect(wordList.get(i), wordList.get(j))){
pathMap.get(wordList.get(i)).add(wordList.get(j));
pathMap.get(wordList.get(j)).add(wordList.get(i));
}
}
}
// 用于bfs的队列
LinkedList<String> queue = new LinkedList<>();
// 已访问过的字符串
Set<String> visited = new HashSet<>();
// 将开始字符串添加到队列头部
// 以#号分隔,左半部分是单词,右半部分是当前路径长度
queue.add(beginWord + "#" + 1);
// 5.开始BFS遍历图
while(!queue.isEmpty()){
String[] oriStr = queue.poll().split("#");
String str = oriStr[0];
if(endWord.equals(str)){
// bfs时,遇到endWord时的路径肯定最短
return Integer.parseInt(oriStr[1]);
}
// 下一个bfs节点,路径长度+1
int nextDepth = Integer.parseInt(oriStr[1]) + 1;
List<String> connectStrList = pathMap.get(str);
for(String connectStr : connectStrList){
if(!visited.contains(connectStr)){
visited.add(connectStr);
queue.add(connectStr + "#" + nextDepth);
}
}
}
return 0;
}
// 用于判断两个字符串是否可直接转变
private boolean connect(String left, String right){
int cnt = 0;
for(int i = 0; i < left.length(); i++){
if(left.charAt(i) != right.charAt(i)){
if(++cnt == 2){
return false;
}
}
}
if(cnt == 1){
return true;
}else{
return false;
}
}
}
2.3 时间复杂度
O(N^2 * K)
- N为单词总数,K为单词长度,O(N*K)初始化 + O(N^2 * K)建立图 + O(N)遍历图
2.4 空间复杂度
最坏O(N^2 * K)
3 图-双端BFS
3.1 思路
前面BFS方法固然好,但时间太慢。可以采用双端BFS,每次从节点少(分支少)的一端遍历,加快找到连通的路径。
3.2 代码
class Solution {
// 已访问过的字符串
private Set<String> visited = new HashSet<>();
private Map<String, List<String>> pathMap = new HashMap<>();
public int ladderLength(String beginWord, String endWord, List<String> wordList) {
boolean find = false;
pathMap.put(beginWord, new ArrayList<String>());
// 首先判断字典中是否包含endWord,以及顺便初始化pathMap和beginWord可转变节点
for(int i = 0; i < wordList.size(); i++){
if(endWord.equals(wordList.get(i))){
find = true;
}
pathMap.put(wordList.get(i), new ArrayList<String>());
if(connect(beginWord, wordList.get(i))){
pathMap.get(beginWord).add(wordList.get(i));
}
}
if(!find){
return 0;
}
// 将能直接转变的联通成图
for(int i = 0; i < wordList.size(); i++){
for(int j = i + 1; j < wordList.size(); j++){
if(connect(wordList.get(i), wordList.get(j))){
pathMap.get(wordList.get(i)).add(wordList.get(j));
pathMap.get(wordList.get(j)).add(wordList.get(i));
}
}
}
// 用于bfs
Set<String> start = new HashSet<>();
// 将开始字符串添加到起点队列
start.add(beginWord);
Set<String> end = new HashSet<>();
// 将结束字符串添加到终点队列
end.add(endWord);
// 开始BFS遍历图
return bfs(start, end, 2);
}
private int bfs(Set<String> start, Set<String> end, int depth){
if(start.size() == 0 || end.size() == 0){
return 0;
}
// 用来存放另一端待BFS遍历元素
HashSet<String> next = new HashSet<>();
for(String str : start){
visited.add(str);
List<String> connectStrList = pathMap.get(str);
for(String connectStr : connectStrList){
if(!visited.contains(connectStr)){
if(end.contains(connectStr)){
// bfs时,end节点包含该str时,说明可达终点,此时路径肯定最短
return depth;
}
next.add(connectStr);
}
}
}
// 每次从较少元素的一侧开始遍历
if(next.size() > end.size()){
return bfs(end, next, ++depth);
}else{
return bfs(next, end, ++depth);
}
}
// 用于判断两个字符串是否可直接转变
private boolean connect(String left, String right){
int cnt = 0;
for(int i = 0; i < left.length(); i++){
if(left.charAt(i) != right.charAt(i)){
if(++cnt == 2){
return false;
}
}
}
if(cnt == 1){
return true;
}else{
return false;
}
}
}
3.3 时间复杂度
O(N^2 * K)
- N为单词总数,K为单词长度,O(N*K)初始化 + O(N^2 * K)建立图 + O(N)遍历图
3.4 空间复杂度
最坏O(N^2 * K)
4 图-双端BFS-优化
4.1 思路
前面双端BFS方法固然好,但时间依然太慢。主要是前面构造pathMap花了太多时间。
我们转变下思路,不再按位挨个比较构造pathMap,而是构建一个转换Map,Key为如abc*de
,value为List,值如[abcfde, abcgde, abchde]等。所以一个单词可以对应很多个这样的key, value。
在判断时,还是双端bfs,不过判断可转换节点时不再按位遍历当前字符串的每个字符,而是替换为’#'后查找同源其他字符串。
4.2 代码
class Solution {
// 已访问过的字符串
private Set<String> unvisited = null;
private Map<String, List<String>> pathMap = new HashMap<>();
private void generateRegex(String str){
char[] cs = str.toCharArray();
for(int j = 0; j < cs.length; j++){
char tmp = cs[j];
cs[j] = '#';
String regexStr = new String(cs);
List<String> strList = pathMap.get(regexStr);
if(strList == null){
strList = new ArrayList<>();
pathMap.put(regexStr, strList);
}
strList.add(str);
cs[j] = tmp;
}
}
public int ladderLength(String beginWord, String endWord, List<String> wordList) {
unvisited = new HashSet<>(wordList);
// 首先判断字典中是否包含endWord
if(!unvisited.contains(endWord)){
return 0;
}
// 构建beginWord可转变节点组成的pathMap
generateRegex(beginWord);
// 构建路径节点可转变节点组成的pathMap
for(int i = 0; i < wordList.size(); i++){
generateRegex(wordList.get(i));
}
// 用于bfs
Set<String> start = new HashSet<>();
// 将开始字符串添加到队列头部
start.add(beginWord);
Set<String> end = new HashSet<>();
end.add(endWord);
// 开始BFS遍历图
return bfs(start, end, 2);
}
private int bfs(Set<String> start, Set<String> end, int depth){
if(start.size() == 0 || end.size() == 0){
return 0;
}
// 标记start集里的所有元素已访问过,避免成环重复访问
unvisited.removeAll(start);
HashSet<String> next = new HashSet<>();
for(String str : start){
char[] cs = str.toCharArray();
// 将字符串转为char[],然后按位遍历出每一个regex对应的list
for(int i = 0; i < str.length(); i++){
char tmp = cs[i];
cs[i] = '#';
String regexStr = new String(cs);
// 得到该regex对应的所有StrList
List<String> connectStrList = pathMap.get(regexStr);
for(String connectStr : connectStrList){
if(unvisited.contains(connectStr)){
if(end.contains(connectStr)){
// bfs时,end节点包含该str时,说明可达终点,此时路径肯定最短
return depth;
}
next.add(connectStr);
}
}
cs[i] = tmp;
}
}
if(next.size() > end.size()){
return bfs(end, next, ++depth);
}else{
return bfs(next, end, ++depth);
}
}
}
4.3 时间复杂度
- O(N * K)
N为单词总数,K为单词长度,O(N * K)
构建pathMap +O(N * K )
查找
这次优化很大!
4.4 空间复杂度
最坏O(N * K * 26) => O(N * K)