BZOJ 1093 强连通缩点+DAG拓扑DP

缩点后在一个DAG上求最长点权链 和方案数

注意转移条件和转移状态

            if (nowmaxn[x] > nowmaxn[v]) {
                ans[v] = ans[x];
                nowmaxn[v] = nowmaxn[x];
            } else if (nowmaxn[x] == nowmaxn[v]) {
                ans[v] = (ans[v] + ans[x]) % X;
            }
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 100005;
const int MAXM = 1000005;
int deep, colorsum = 0;
int top;/*sta目前的大小*/
int dfn[MAXN], color[MAXN], low[MAXN];
int sta[MAXN];//存着当前所有可能能构成强连通分量的点
bool visit[MAXN];//表示一个点目前是否在sta中
int cnt[MAXN];//各个强连通分量中含点的数目
int to[MAXM << 1], nxt[MAXM << 1], Head[MAXN], ed = 1;
inline void addedge(int u, int v)
{
    to[++ed] = v;
    nxt[ed] = Head[u];
    Head[u] = ed;
}
void tarjan(int x)
{
    dfn[x] = ++deep;
    low[x] = deep;
    visit[x] = 1;
    sta[++top] = x;
    for (int i = Head[x]; i; i = nxt[i]) {
        int v = to[i];
        if (!dfn[v]) {
            tarjan(v);
            low[x] = min(low[x], low[v]);
        } else {
            if (visit[v]) {
                low[x] = min(low[x], low[v]);
            }
        }
    }
    if (dfn[x] == low[x]) {
        color[x] = ++colorsum;
        visit[x] = 0;
        while (sta[top] != x) {
            color[sta[top]] = colorsum;
            visit[sta[top--]] = 0;
        }
        top--;
    }
}
int X;
int du[MAXN];
vector<int> g[MAXN];
map<pair<int, int>, int> mp, mp2;
queue<int> que;
int ans[MAXN];
int nowmaxn[MAXN];
int main()
{
    int n, m;
    int u, v;
    scanf("%d %d %d", &n, &m, &X);
    for (int i = 1; i <= m; i++) {
        scanf("%d %d", &u, &v);
        if (!mp2[make_pair(u, v)]) {
            addedge(u, v);
            mp2[make_pair(u, v)] = 1;
        }
    }
    for (int i = 1; i <= n; i++) {
        if (!dfn[i]) {
            tarjan(i);
        }
        cnt[color[i]]++;
    }
    for (u = 1; u <= n; u++) {
        int x = color[u];
        for (int i = Head[u]; i; i = nxt[i]) {
            v = to[i];
            int y = color[v];
            if (x != y) {
                if (!mp[make_pair(x, y)]) {
                    g[x].push_back(y);
                    du[y]++;
                    mp[make_pair(x, y)] = 1;
                }
            }
        }
    }
    for (int i = 1; i <= colorsum; i++) {
        if (du[i] == 0) {
            que.push(i);
            ans[i] = 1;
        }
    }
    while (que.size()) {
        int x = que.front();
        que.pop();
        nowmaxn[x] += cnt[x];
        for (int i = 0; i < g[x].size(); i++) {
            v = g[x][i];
            if (nowmaxn[x] > nowmaxn[v]) {
                ans[v] = ans[x];
                nowmaxn[v] = nowmaxn[x];
            } else if (nowmaxn[x] == nowmaxn[v]) {
                ans[v] = (ans[v] + ans[x]) % X;
            }
            du[v]--;
            if (du[v] == 0) {
                que.push(v);
            }
        }
    }
    int anser = 0;
    int maxnn = 0;
    for (int i = 1; i <= colorsum; i++) {
        if (nowmaxn[i] > maxnn) {
            anser = ans[i];
            maxnn = nowmaxn[i];
        } else if (nowmaxn[i] == maxnn) {
            anser = (anser + ans[i]) % X;
        }
    }
    cout << maxnn << endl;
    cout << anser << endl;

}
View Code

 

转载于:https://www.cnblogs.com/Aragaki/p/11195465.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值