[BZOJ1093][ZJOI2007]最大半连通子图(Tarjan+拓扑排序+DP)

首先得到,一个强连通分量一定是半连通的。
把强连通分量缩点之后,可以得到一个拓扑图。下面, sze[u] 新图中点 u 所对应强连通分量的大小。
缩点之后,就很容易得出,一个半连通子图一定是拓扑图中的一条链,半连通子图的大小为这条链上所有点的sze之和。
所以,现在就是要求这个拓扑图的最长链( sze 之和最大)。
考虑按照拓扑排序DP, f[u] 表示以 u 为终点的最长链长度:
1、对于点u,如果点 u 的入度为0,则 f[u]=sze[u]
2、对于一条边 <u,v> <script type="math/tex" id="MathJax-Element-2866"> </script>:
f[v]=max(f[v],f[u]+sze[v])
最后的结果(下面记为 res )就是所有点的 f 的最大值。
对于第二问,也是按拓扑排序DP,g[u]表示以 u 为终点的最长链个数:
1、对于点u,如果点 u 的入度为0,则 g[u]=1
2、对于一条边 <u,v> <script type="math/tex" id="MathJax-Element-2876"> </script>,如果有 f[v]=f[u]+sze[v] ,则:
g[v]+=g[u]
最后结果就是对于所有满足 f[u]=res 的点 u ,这些点的g之和。
代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
    int res = 0; bool bo = 0; char c;
    while (((c = getchar()) < '0' || c > '9') && c != '-');
    if (c == '-') bo = 1; else res = c - 48;
    while ((c = getchar()) >= '0' && c <= '9')
        res = (res << 3) + (res << 1) + (c - 48);
    return bo ? ~res + 1 : res;
}
const int N = 1e5 + 5, M = 2e6 + 5;
int n, m, ZZQ, ecnt, nxt[M], adj[N], go[M], dfn[N], low[N], num, bel[N],
sze[N], times, top, stk[N], ecnt2, nxt2[M], adj2[N], go2[M],
H, T, Q[N], f[N], g[N], cnt[N], orz[N], TOT;
bool ins[N];
struct cyx {
    int u, v;
    cyx() {}
    cyx(int _u, int _v):
        u(_u), v(_v) {}
} ege[M];
inline bool comp(const cyx &a, const cyx &b) {
    if (a.u != b.u) return a.u < b.u;
    return a.v < b.v;
}
void add_edge(int u, int v) {
    nxt[++ecnt] = adj[u]; adj[u] = ecnt; go[ecnt] = v;
}
void add_edge2(int u, int v) {
    nxt2[++ecnt2] = adj2[u]; adj2[u] = ecnt2; go2[ecnt2] = v;
    cnt[v]++; orz[v]++;
}
void orzcyxdalao(int u) {
    dfn[u] = low[u] = ++times;
    stk[++top] = u; ins[u] = 1;
    for (int e = adj[u], v; e; e = nxt[e])
        if (!dfn[v = go[e]]) {
            orzcyxdalao(v);
            low[u] = min(low[u], low[v]);
        }
        else if (ins[v]) low[u] = min(low[u], dfn[v]);
    if (dfn[u] == low[u]) {
        int v; sze[bel[u] = ++num] = 1; ins[u] = 0;
        while (v = stk[top--], v != u) sze[bel[v] = num]++, ins[v] = 0;
    }
}
void DP() {
    int i; H = T = 0;
    for (i = 1; i <= num; i++) if (!cnt[i]) f[Q[++T] = i] = sze[i];
    while (H < T) {
        int u = Q[++H];
        for (int e = adj2[u], v; e; e = nxt2[e]) {
            if (!(--cnt[v = go2[e]])) Q[++T] = v;
            f[v] = max(f[v], f[u] + sze[v]);
        }
    }
    H = T = 0; for (i = 1; i <= num; i++) if (!orz[i]) g[Q[++T] = i] = 1;
    while (H < T) {
        int u = Q[++H];
        for (int e = adj2[u], v; e; e = nxt2[e]) {
            if (!(--orz[v = go2[e]])) Q[++T] = v;
            if (f[v] == f[u] + sze[v]) g[v] = (g[v] + g[u]) % ZZQ;
        }
    }
}
int main() {
    int i, x, y; n = read(); m = read(); ZZQ = read();
    for (i = 1; i <= m; i++) x = read(), y = read(), add_edge(x, y);
    for (i = 1; i <= n; i++) if (!dfn[i]) orzcyxdalao(i);
    for (i = 1; i <= n; i++) for (int e = adj[i]; e; e = nxt[e])
        if (bel[i] != bel[go[e]]) ege[++TOT] = cyx(bel[i], bel[go[e]]);
    sort(ege + 1, ege + TOT + 1, comp);
    for (i = 1; i <= TOT; i++) if (i == 1 || (ege[i].u != ege[i - 1].u
        || ege[i].v != ege[i - 1].v)) add_edge2(ege[i].u, ege[i].v);
    int res = 0, ans = 0;
    DP(); for (i = 1; i <= num; i++) ans = max(ans, f[i]);
    for (i = 1; i <= num; i++) if (ans == f[i]) res = (res + g[i]) % ZZQ;
    cout << ans << endl << res << endl;
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值