sitecore中图片的“多语言”

Sitecore本身可以很方便的对各类文字类型的数据进行多语言的管理,除了默认的英语以外,只需要在sitecore中增加一个语言,例如中文,那么所有在~/sitecore/content下的项都可以创建中文版本。

这对文字类型的数据进行多语言的管理非常方便。但实际上,对于“数据”类的图片,我们也可以并且也应该进行“多语言”的管理。

 

这里我对“数据”类的图片是指包含了“数据”的图片,为了和用以做布局的背景图一类的图片做区分。

 

例如产品的照片里,出现不同的语言文字是很常有的;甚至针对不用语言地区的用户,产品的包装都是不同的。

 

而sitecore的media library里上传图片,默认的类型是unversioned的,即不分版本的。这样的结果是:

  • 对于“同一张”图片的“不同版本”,我们需要上传多张图片,并且这些图片在media library中是多个项。例如同一产品的图片,英文版和中文版,是2个独立的项,互相之间没有联系。
  • 在我们编辑“产品”项的英文版时,我们引用了图片A(该产品图的英文版),而仍然是同样这个产品,在我们编辑中文版时,需要引用图片B(该产品图的中文版)。对同一个图片项需要进行多次引用。
  • 在产品图片很多的时候,media library中将出现非常多的图片,日渐难以管理。例如:Product_1_en.jpg, Product_1_cn.jpg, Product_2_en.jpg, Product_2_cn.jpg等等。

 

解决的方法是,我们先在Media library中选择当前语言版本为英文,使用Upload Files(Advanced)上传一个产品的英文版图片,并且勾选"Make Uploaded Media Items Versionable",这样我们上传上的图片则是带有版本区分。成功后点击右上角的语言切换图标切换到中文版,再Attach一张该产品的中文图片即可。这样做的结果是:

  • “同一张”图片在Media library中只会出现一项,在多语言环境中极大的减少了项的数目。
  • 不同语言版本的图片有统一的关联。
  • 更大的好处是,我们只需要在“产品”项中链接一次该图片项,以后在我们切换产品项的语言版本时,图片会自动跟随着一起切换语言版本。 

 

转载于:https://www.cnblogs.com/Elvin/archive/2011/06/24/2089226.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值