- 博客(10)
- 资源 (1)
- 收藏
- 关注
原创 机器学习面试总结(第五篇)
18、ID3该树模型可以重复使用特征吗?ID3使用什么原则进行选择特征? 19、C4.5使用什么原则进行选择特征的?怎样进行剪枝操作? 20、CART树挑选特征的准则?回归树和分类树分开进行介绍?信息增益,信息增益比,基尼指数有什么区别和联系? 21、SVM和logsitic回归使用场景? ...
2018-07-31 16:50:56 364
原创 机器学习面试总结(第四篇)
15、k-means算法具体步骤?有哪些优缺点?改进?用了哪些距离度量? 16、有哪些常见的树?树模型的优点?树生成步骤? 17、熵,条件熵的理解及公式?信息增益的理解?信息增益比要解决的问题? ...
2018-07-30 20:42:46 326
原创 机器学习面试总结(第三篇)
9、集成学习大致分类?通俗理解怎样才能提高集成学习的性能? 10、Booststrap sampling需要解决的问题?Booststrap sampling的思想?Bagging的基本思想?从偏差方差角度解释bagging? 11、随机森林RandomForest的思想?RF与bagging的不同? 12、常用的集成方法?Stacking的思想? 13、个体学习器的多样性增强,可以从哪几...
2018-07-30 20:39:33 290
原创 机器学习面试总结(第二篇)
6、为什么需要特征选择?特征选择有哪些? 7、Lasso L1正则化为什么把系数压缩成0?优化方法? 8、Lasso的全称?
2018-07-30 20:33:20 349
原创 机器学习面试总结(第一篇)
1、为什么SVM要最大间隔? 2、SVM为什么可以要转换成对偶问题?用对偶问题的好处?原问题和对偶问题的关系? 3、SMO算法的流程 4、SVM怎么防止过拟合? 5、SVM如何处理多分类问题? ...
2018-07-30 20:28:57 389
原创 换个角度理解岭回归
今天要写的博客说简单也简单,是大家熟悉的线性模型,但是我们通过线性模型的不足,我们导出岭回归,下面是博客的结构。 1.线性模型 2.线性模型出现的问题 3.改进线性模型—->
2018-07-30 20:18:17 1574
原创 全面理解似然函数与贝叶斯公式
不知道你是否看过我之前的文章,如果看了的话,你会认为很烂,然后判断这篇博客也是很大程度上是很烂的,如果这样的,很幸运,那你使用了贝叶斯思维方式来进行思考问题了。 学了这么多年贝叶斯公式,不是很了解贝叶斯公式,但是今天和师兄去聊似然函数的时候,聊到了贝叶斯公式,感觉可以去解释人生当中做的一些判断。下面...
2018-07-30 20:11:42 14804 7
转载 透彻理解神经网络剪枝算法
1. 问题叙述 心血来潮写点最近做的成果,主要分成两个博客来进行阐述。研究生上了一年半看了不少关于剪枝神经网络方面的文章,但是有很少的文章能让人感觉到耳目一新,打通了任督二脉的感觉。前段时间看到了一个剪枝算法就有这种感觉。和大家分享下。 全连接神经网络在很多方面都用的很多,这我就不赘述了,全连接有很强的逼近能力但是很容易导致过拟合。所以 机器学习与模式识别最核心的问题就是减小系统的复...
2018-07-30 20:07:36 16502 1
原创 机器学习入门之线性回归算法推导
心血来潮,想将所学到的知识写篇博客,作者所研究的方向为机器学习,刚学习的时候,走了很多弯路,看的书不少,在推导机器学习一些算法时候遇到了不少困难,查了不少资料,在刚才学的时候,有很多公式推导起来很困难,或者说大多数人都会遇到这样的问题,本博客目的就是解决在机器学习公式推导过程中遇到的问题。 关于机器学习的参考书,周志华的机器学习,李航的统计学习方法,及国外的PRML都是不错的阅读材料。还有Andr...
2018-07-30 20:03:52 796
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人