最小生成树

给定一个无向图,如果它的某个子图中任意两个顶点都互相连通并且是一棵树,那么这课树就是生成树。如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST, Minimum Spanning Tree)。

(1)Prime算法

CODE01

void prim()
{
	int mincost[MAXVEX];
	bool used[MAXVEX];
	fill(mincost, mincost + V,INF);
	fill(used, used + V,false);

	mincost[0] = 0;
	int res = 0;
	while (true)
	{
		int v = -1,mins=INF;
		for (int u = 0; u < V; ++u)
		{
			if (!used[u] && mincost[u] < mins)
			{
				mins=mincost[u];
				v = u;	
			}
		}

		if (v == -1)break;
		used[v] = true;
		res += mincost[v];

		for (int u = 0; u < G2[v].size(); ++u)
		{
			edge e = G2[v][u];
			mincost[e.to] = min(mincost[e.to], e.cost);
		}
	}
	printf("%d\n", res);
}

(2)Kruskal算法

CODE02

用到的头文件是并查集的实现,请看本博客的文章并查集

#include"DisjointSet.h"
bool comp(const edge &e1, const edge &e2)
{
	return e1.cost < e2.cost;
}
void kruskal()
{
	edge es[MAXVEX];
	DisjointSet D;
	int k = 0;
	for (int i = 0; i < V; ++i)
	{
		for (int j = 0; j < G2[i].size(); ++j)
		{
			es[k].from = i;
			es[k].to = G2[i][j].to;
			es[k].cost = G2[i][j].cost;
			++k;
		}
	}
	for (int i = 0; i < k; ++i)
	{
		printf("%d %d %d\n", es[i].from, es[i].to, es[i].cost);
	}
	printf("\n");

	sort(es, es + k, comp);
	for (int i = 0; i < k; ++i)
	{
		printf("%d %d %d\n", es[i].from, es[i].to, es[i].cost);
	}
	printf("\n");

	int res = 0;
	D.init(V);
	for (int i = 0; i < k; ++i)
	{
		edge e = es[i];
		if (!D.same(e.from, e.to))
		{
			D.unite(e.from, e.to);
			res += e.cost;
		}
	}
	printf("%d\n", res);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值