1 生物启发算法概述
生物启发算法从属于计算智能,属于人工智能领域中智能算法研究环节。其设计目的在于模拟动物生存过程,发现优化问题解决途径。通常适用于组合优化问题。目前,生物启发算法已经发展为人工智能领域的重要方向,在解决海量数据处理等问题上,具有高效、稳定等优势。
不同学者根据不同生物的生存过程,抽象出各类仿生方法。具有代表性的包括:模拟鸟类觅食过程的粒子群算法,模拟蚂蚁觅食的蚁群算法,模拟密封采蜜过程的蜜蜂算法等。虽然各算法寻优的思路不同,但从各算法的结构上看,总会包括以下内容:
- 种群初始化
- 根据目标函数衡量个体的适应度
- 设置算法的控制参数
- 初始化算法监控器*
- 选择父代个体,根据演化机制,生成子代
- 衡量子代的适应度
- 根据适