bzoj1017: [JSOI2008]魔兽地图DotR[树形DP+依赖型背包]

本来今天刷题春风得意,直到被这道题卡住才意识到自己有多么蠢。

以前的树形背包都是子节点依赖父节点,而这一题却要求父节点依赖其所有子节点。

我喊了一句:这特么在逗我?然后我就傻了。

想了一个小时,想不出来,然后去看题解。

这题有经典做法和VFK的新做法两种,我这种人自然优先选了前者。


这题算是把我对树形DP的闭塞理解给打通了一点。

我本认为树形DP只有用子节点的状态去更新父节点的状态,真是太天真了。

实际上这道题里是用子节点的状态合并得到父节点的状态。


首先,设出状态f[i][j][k]表示节点i对父亲的贡献为j付出的代价为k时i节点及其子树可以得到的最多能量。

        dp当然要从初始状态推起咯。

        那么对于那些叶子节点,也就是所谓的基本装备:

        f[i][j][j*cost[i]]=(j-i)*power[i]

然而对于那些非叶子节点:

          f[i][j][k]=max{g[k-r]+f[son][j*need[son]][r]};

这个方程具体点的解释可以理解为预算为k,拨给这个项目经费为r。

注意在这里我们并没有对f[i][j][k]中这一层中“私吞”部分进行统计,所以是j*need[son],也就是假设全部先上交。

此处g数组是对上一次f[i][j]的复制,防止出现值的误调用。

此处循环考虑的因素比较多,所以总不能一边调用f[i][j]一边更新f[i][j]吧。memcpy多方便。


然后我们开始统计私吞部分:

          f[i][j][k]=max{f[i][j'][k]+(j'-j)*power[i]}

事实上,(j'-j)*power[i]就是没有用于合成(即上交)的i装备产生的能量。


非常巧妙,可惜这状态我想不到,还是经验问题。

Tips:注意挖掉一些非法状态和缩小lim范围。

------------------------------------------------------------------------------------------------------------------------------------------------

Code:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
 
const int N=70;
const int P=110;
const int M=2010;
const int INF=~0u>>1;
 
struct list{
    int p;
    list *next;
    list(){}
    list* Set(int _p,list* _next){
        p=_p; next=_next;
        return this; 
    }
}T[M],*head[N];int data=0;
int f[N][P][M],g[M],need[N];
int n,m,pow[N],cost[N],lim[N];
int fa[N],ans=-INF;
//F[i][j][k]表示i物品贡献给父节点j个花费k的最大力量
 
void dfs(int p){
    if(!head[p]){
        lim[p]=min(lim[p],m/cost[p]);
        for(int i=0;i<=lim[p];i++)
            for(int j=i;j<=lim[p];j++)
                f[p][i][j*cost[p]]=(j-i)*pow[p];
            //底层信息 
        return;
    }
    lim[p]=INF;
    for(list *t=head[p];t;t=t->next){
        dfs(t->p);
        lim[p]=min(lim[p],lim[t->p]/need[t->p]);
    }
    for(int i=0;i<=lim[p];i++) f[p][i][0]=0;
     //装备合成本身不需要代价,所以合并之前初始化为0
    for(list *t=head[p];t;t=t->next){
        for(int j=0;j<=lim[p];j++){
            memcpy(g,f[p][j],sizeof(f[p][j]));
            memset(f[p][j],-1,sizeof(f[p][j]));
            for(int k=m;k>=0;k--)
                for(int r=k;r>=0;r--)
                    if(g[k-r]!=-1&&f[t->p][j*need[t->p]][r]!=-1){
                        f[p][j][k]=max(f[p][j][k],g[k-r]+f[t->p][j*need[t->p]][r]);
                        //假设全部上交 
                        ans=max(ans,f[p][j][k]); 
                    }
        }
    }//对子树信息进行合并
    for(int i=0;i<=lim[p];i++) 
        for(int j=i;j<=lim[p];j++) 
            for(int k=0;k<=m;k++) 
                if(f[p][j][k]!=-1) 
                    f[p][i][k]=max(f[p][i][k],f[p][j][k]+(j-i)*pow[p]),ans=max(ans,f[p][i][k]);
                    //将节点自身信息并入 
}
 
int main(){
    char opt;int t,u,v;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        scanf("%d \n%c\n",&pow[i],&opt);
        if(opt=='B') scanf("%d%d",&cost[i],&lim[i]);
        if(opt=='A'){
            for(scanf("%d",&t);t;t--){
                scanf("%d%d",&u,&v);
                head[i]=(T+(data++))->Set(u,head[i]);
                need[u]=v; fa[u]=i;
            }
        }
    }memset(f,-1,sizeof(f));
    for(int i=1;i<=n;i++) if(!fa[i]) dfs(i);
    printf("%d\n",ans);
    return 0;
}




注意在这里我们并没有对f[i][j][k]中这一层中“私吞”部分进行统计,所以是j*need[son],也就是假设全部先上交。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值