项目背景
最近遇到这样一个需求:
用决策树和随机森林模型做一个关于A股上市公司的经营业绩和投资效益的实证研究分析不同的解释变量对股票收益率的影响。
基本原理
- 决策树:决策树是一种监督学习算法,可以用于分类和回归任务。它通过递归地分割数据集,直到每个叶子节点都包含一个类别或者回归值。
- 随机森林:随机森林是一种基于决策树的集成学习方法。它通过构建多个决策树,然后对它们的预测结果进行投票或者平均,从而提高预测准确性。
- A股上市公司的经营业绩和投资效益:这些数据可以从财务报表中获取,包括营业收入、净利润、投资收益等。
- 股票收益率:股票收益率是指投资者在一定时间内持有股票所获得的收益与投资成本的比率。
示例代码
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
# 生成虚拟数据
np.random.seed(42)
data = pd.DataFrame({
'营业收入': np.random.rand(100) * 1000000,
'净利润': np.random.rand(100) * 100000,
'投资收益': np.random.rand(100) * 100000,