给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。
你的算法时间复杂度必须是 O(log n) 级别。
如果数组中不存在目标值,返回 [-1, -1]。
示例 1:
输入: nums = [5,7,7,8,8,10], target = 8
输出: [3,4]
示例 2:
输入: nums = [5,7,7,8,8,10], target = 6
输出: [-1,-1]
解题思路
分别用二分查找来寻找左边界和右边界,时间复杂度为O(logn)。
- 当寻找左边界时,如果 nums[mid]==target, right = mid ,左边界包含target
- 当寻找右边界时,如果 nums[mid]==target, left = mid + 1 ,右边界不包含target
相当于target的索引范围为 [left, right) 。
class Solution:
def searchRange(self, nums: List[int], target: int) -> List[int]:
res = [-1, -1]
if nums == []:
return res
left, right = 0, len(nums) - 1
# 寻找第一个出现的k,即左边界
while left < right:
mid = (left + right) // 2
if nums[mid] >= target:
right = mid
else:
left = mid + 1
if nums[left] != target:
return res
# left为target的最左边
res[0] = left
# 寻找最后出现的k,即右边界
right = len(nums)
while left < right:
mid = (left + right) // 2
if nums[mid] <= target:
left = mid + 1
else:
right = mid
# 右边界不包括target,相当于target的范围为[left, right)
res[1] = left - 1
return res