自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

AI柠檬博客(CSDN频道)

一个科技爱好者的个人博客,个人独立博客站点:https://blog.ailemon.net

  • 博客(13)
  • 收藏
  • 关注

原创 进程间通信的五种方式原理及代码实现

本文介绍了进程间通信的五种主要方式:信号通信、管道通信(匿名/命名管道)、信号量、共享内存和套接字。详细阐述了每种方式的原理和实现机制,包括信号通信的事件通知机制、管道通信的文件读写方式、信号量的PV同步操作、共享内存的空间共享特性等。文章提供了C/C++和Python两种语言的代码实现示例,涵盖父子进程通信、生产者消费者模型等典型应用场景。这些通信机制是计算机系统开发的基础知识,对处理多进程协作和资源同步问题具有重要意义。

2025-09-10 21:54:24 1118

原创 python实现socket通信

Python实现Socket通信摘要:本文介绍了使用Python的socket模块实现TCP通信的方法,适用于分布式系统如机器学习并行计算。主要内容包括:1)服务器/客户端模型;2)两种服务器模型(循环和并发服务器);3)通过多进程实现并发TCP服务的代码示例,包含服务器端使用Process类处理连接、客户端连接和通信流程。文章展示了完整的Socket通信实现过程,包括连接建立、数据传输和超时处理,体现了Python在实现网络通信时的简洁性和高效性。

2025-09-10 21:43:15 561

原创 Python实现多进程运行

本文介绍了在Python中实现多进程并发执行的方法,主要通过使用multiprocessing库来实现。文章首先展示了一个简单的代码示例,说明了如何通过定义一个继承自multiprocessing.Process的类来创建新进程,并在其中定义run()方法作为进程的入口。文章还提到,可以通过start()方法启动进程,并通过pid属性获取进程号,以及使用is_alive()、join()和terminate()等方法管理进程的生命周期。此外,文章提到多进程的另一种方法是使用进程池,但未在本文中详细展开。本文

2025-05-19 21:55:22 318

原创 Python读取wav格式文件

在处理WAV格式文件时,C++需要深入了解文件格式且易出错,而MatLab虽简洁但实用性受限。因此,Python成为理想选择,因其简洁易用且实用。通过导入wave包,Python提供了方便的WAV文件读写接口,支持单声道与立体声,但不支持压缩。wave类提供了多种方法,如open()用于打开文件,getnchannels()获取声道数,getsampwidth()获取每帧字节宽度等。此外,使用numpy的shape可以调整数组形状,解决立体声信号能量表示问题。示例代码展示了如何读取WAV文件并显示声音波形,

2025-05-19 21:51:39 490

原创 机器学习入门教程分享

首先,高数是一定要学的,这是做机器学习要用到的最基础的数学知识(微积分),然后还需要学习线性代数,也是数学知识(矩阵),大学数学中还有一门是“概率论与数理统计”,也是机器学习中会用到的数学知识。”我在这里列的教程,大部分我亲自都看过一遍,没怎么看的也都看了介绍,或者是我身边认识的人看过,感觉很不错。把你自己学到的数学知识、计算机知识和机器学习知识都写下来,一个是自己记录,另外也是跟别人分享,帮助别人学习和进步,互相探讨,别人还能帮你挑出错误,有助于你的成长,也欢迎喜好机器学习方面的同好来我博客交流。

2025-04-29 22:04:07 834

原创 统计语言模型:从中文拼音到文本

本文首发于如果你想学习更多机器学习、大语言模型的内容,欢迎访问前言:自然语言是信息的载体,记录和传播着信息,信息论之父香农对信息的定义是“信息是用于消除随机不确定性的东西”。信息通过编码,经过一定的信道传输,然后传递到接收者,再解码成对应的可被人理解感知的东西,就完成了一次信息的传递。原始人的通信方式就是说话,而说话是先将信息编码为对应的语言信号,可以是文本,可以是声音,也可以就是中文拼音,然后接收者再将收到的信号进行解码。

2025-04-29 21:38:35 980

原创 机器学习:神经网络模型

比如,我们想识别图片上的东西是什么,我们只需要将图片上每一个像素的灰度值作为特征输入到神经网络的输入层中去,然后进行训练,每一个神经元实际上都是在训练对数几率回归,到了输出层之后,比如上图我们有2个类别,假设Y1代表人,Y2代表不是人,如果Y1激活了,说明图片中是一个人,否则就不是。图中,w为权重矩阵,x为输入向量,b为偏置项,最终可以计算得到相应的z值,然后再使用激活函数(比如sigmoid)进行函数变换,将输出值映射到一定的值域空间。输入的讯息称为输入向量,是原始输入数据。输出的讯息称为输出向量。

2024-04-18 00:54:10 888 1

原创 机器学习:过拟合与欠拟合问题

本文首发于AI柠檬博客,原文链接:机器学习:过拟合与欠拟合问题 | AI柠檬过拟合(overfitting)与欠拟合(underfitting)是统计学中的一组现象。过拟合是在统计模型中,由于使用的参数过多而导致模型对观测数据(训练数据)过度拟合,以至于用该模型来预测其他测试样本输出的时候与实际输出或者期望值相差很大的现象,。欠拟合则刚好相反,是由于统计模型使用的参数过少,以至于得到的模型难以拟合观测数据(训练数据)的现象。我们总是希望在机器学习训练时,机器学习模型能在新样本上很好的表现。过拟合时.

2022-03-14 22:38:10 4299

原创 统计N元语言模型生成算法:简单中文词频统计(文末获取代码)

本文首发于 AI柠檬博客,原文链接:统计N元语言模型生成算法:简单中文词频统计 | AI柠檬做自然语言处理有一个基本的步骤是词频统计,然而我们知道,中文的词语有单音节词、双音节词和多音节词之分,所以中文处理起来远比英文复杂得多。不过,我们可以“偷个懒”,如果要做词频统计的文本量足够大,而且我们只需要知道词频最高的几个词的话,那么我们可以将问题简化一下。我们简化成什么样呢?很简单,我们通过大量文本来分别每2字词、3字词、4字词乃至5个及以上的字词做一个切分,每统计一个后再向后偏移1字符,如此往复,直到

2022-03-14 22:26:18 789

原创 在数据为王的人工智能时代如何收集机器学习数据

文本首发于AI柠檬博客,原文链接:https://blog.ailemon.net/2017/02/17/how-to-collect-data-for-machine-learning/我最近因为学习机器学习并且想要做一些实践项目而打算收集一些数据来做机器学习,但是发现,数据不是你想找,想找就能找的。在机器学习方面,用于训练的数据对于整个机器学习进程的重要意义自然不言而喻,而数据问题涉及到收集、存储、表示以及规模和错误率等多个方面。关于数据,我想谈一谈数据的收集问题。如何收集数据呢?我们绝大.

2021-02-19 21:10:54 2060

原创 机器学习:对数几率回归(附代码)

对数几率回归(Logistic Regression),简称为对率回归,也称逻辑斯蒂回归,或者逻辑回归。虽然它被很多人称为逻辑回归,但是中文的“逻辑”一词与“logistic”和“logit”意思相去甚远。它是广义的线性模型,只是将线性回归方程中的y换成了ln[p/(1-p),p是p(y=1|x),p/(1-p)是“几率”。对数几率回归是用来做分类任务的,所以,需要找一个单调可微函数,将分类任务的真实标记和线性回归模型的预测值联系起来。一元对率回归既然是做0和1的二分类,我们肯定会想到“单位阶跃函数”

2021-02-19 21:01:21 5323

原创 机器学习:统计回归模型,文末可获取代码

文本首发于AI柠檬博客,原文链接:https://blog.ailemon.me/2017/02/10/machine-learningregression-statistic-model/统计回归方法是当今大多数机器学习方法的基础之一,机器学习的很多工程领域应用都是基于此的推广。在统计学中,线性回归(Linear regression)是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。多项式曲线拟合(Fitting)则是将线性回归推广到了高阶函数中。机器学习

2020-11-06 22:10:19 654

原创 什么是机器学习?用最简单的话语告诉你,文末可获取代码

本文首发于AI柠檬博客,原文链接:https://blog.ailemon.net/2017/02/02/introduction-to-machine-learning/作为一个学习机器学习有一段时间的人,很理解那些还一点都不知道机器学习为何物的人的着急,因为我当时就是那样,我想以自己的语言来尽量通俗易懂地把它讲出来,以便帮助他们入门。文末可获取样例代码,可以自己动手直接运行学习。 机器学习是人工智能的一个分支,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科,已广泛应...

2020-11-06 21:33:28 559

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除