1.分金子
A、B两伙马贼意外地在一片沙漠中发现了一处金矿,双方都想独占金矿,但各自的实力都不足以吞下对方,经过谈判后,双方同意用一个公平的方式来处理这片金矿。处理的规则如下:他们把整个金矿分成n段,由A、B开始轮流从最左端或最右端占据一段,直到分完为止。
马贼A想提前知道他们能分到多少金子,因此请你帮忙计算他们最后各自拥有多少金子?(两伙马贼均会采取对己方有利的策略)
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <algorithm>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
using namespace std;
int a[505];
int dp[505][505];
int sum[505];
int dfs(int l,int r)
{
if(l>r) return 0;
if(dp[l][r]!=-1) return dp[l][r];
dp[l][r]=sum[r]-sum[l-1]-min(dfs(l+1,r),dfs(l,r-1));
return dp[l][r];
}
int main()
{
int t;
scanf("%d",&t);
int cas=1;
while(t--)
{
int n;
scanf("%d",&n);
memset(dp,-1,sizeof(dp));
sum[0]=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
dp[i][i]=a[i];
sum[i]=sum[i-1]+a[i];
}
int ans1=dfs(1,n);
int ans2=sum[n]-ans1;
cout<<"Case #"<<cas++<<": "<<ans1<<" "<<ans2<<endl;
}
return 0;
}
2.剪气球串
小明买了一些彩色的气球用绳子串在一条线上,想要装饰房间,每个气球都染上了一种颜色,每个气球的形状都是各不相同的。我们用1到9一共9个数字表示不同的颜色,如12345则表示一串5个颜色各不相同的气球串。但小明希望得到不出现重复颜色的气球串,那么现在小明需要将这个气球串剪成多个较短的气球串,小明一共有多少种剪法?如原气球串12345的一种是剪法是剪成12和345两个气球串。
注意每种剪法需满足最后的子串中气球颜色各不相同(如果满足该条件,允许不剪,即保留原串)。两种剪法不同当且仅当存在一个位置,在一种剪法里剪开了,而在另一种中没剪开。详见样例分析。
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <algorithm>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
using namespace std;
typedef long long LL;
const LL mod = 1e9 + 7;
int a[100005];
LL dp[100005];
int vis[10];
int main()
{
int n;
scanf("%d",&n);
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
a[0]=0;
dp[0]=dp[1]=1;
for(int i=2;i<=n;i++)
{
memset(vis,0,sizeof(vis));
vis[a[i]]=1;
for(int j=1;j<=9;j++)
{
if(i-j<0) break;
dp[i]=(dp[i]+dp[i-j])%mod;
if(vis[a[i-j]]==1) break;
vis[a[i-j]]=1;
}
}
cout<<dp[n]<<endl;
return 0;
}