递归里面还有递归 , 三个递归嵌套解决奥数题 :
在下面的数中间填上“+”,“-”,使计算结果为100:123456789=100。
个人表达能力不是很好 所以只能写点简单的分析。
简单的思路分析: 可以在9个数字(123456789)之间插入的符号个数最多为8个,符号放置的位置只能从一取到八,而且不能有两个符号及两个以上的符号位置重复,且在不考虑符号为加或减的情况下(例如符号的位置为三,五,七 与 七 ,五 ,三 视为同种情况),有N个符号(N<=8),则 第n个符号所在的位置必须大于第n-1位符号所在的位置,然后再考虑符号是加是减。
1 | 一 | 2 | 二 | 3 | 三 | 4 | 四 | 5 | 五 | 6 | 六 | 7 | 七 | 8 | 八 |
9
|
例如:
第一步,先考虑符号的个数:为2的情况
第二步,考虑符号的位置:
(一二),(一三),(一四),(一五),(一六),(一七),(一八)
(二三),(二四),(二五),(二六),(二七),(二八),
(三四),(三五),(三六),(三七),(三八),
......
第三步,再考虑符号为加或为减:
以符号位置为(一二)的情况举例
1+2+3456789
1+2-3456789
1-2+3456789
1-2-3456789 ;
public class aoShuJiaJian_QiuHe
{
public static void print(int[] oi, int[] sub_array,int[] xy,int jieguo)//输出结果
{
System.out.print(sub_array[0]);
for (int i = 1; i <sub_array.length; i++)
{
if (oi[i - 1] == 0)
{
System.out.print("+" + sub_array[i]);
}
else
{
System.out.print("-" + sub_array[i]);
}
}
System.out.print("="+jieguo);
System.out.println();
//for(int i=0;i<n;i++) //输出符号的位置
//{
// System.out.print(xy[i]+" ");
//}
//System.out.println();
return ;
}
public static void jiSuan_jieguo(int n, int[] oi, int[] sub_array, int[] xy) //计算结果
{
int qiuhe = sub_array[0];
for (int i = 1; i < sub_array.length; i++)
{
if (oi[i - 1] == 0) //0为加,1为减 0-1变量
{
qiuhe = qiuhe + sub_array[i ];
}
else
{
qiuhe = qiuhe - sub_array[i ];
}
}
if (qiuhe == 100)
{
print(oi, sub_array, xy,qiuhe); //结果等于100输出
return;
}
return;
}
public static void jiSuan_even(int[] array, int n, int[] xy, int[] oi) //计算被符号分割的各各数 例如符号个数为3 符号位为3,5,7 则被符号分割的数为123,45,67,89
{
//array 要计算的数组 n为符号个数 xy保存的是符号的位置 oi保存的是加减符号
int[] sub_array = new int[n + 1]; //保存被符号分割的数 符号若为N个 则被符号分割的数的个数为N+1个
for (int i = 0; i < n + 1; i++)
{
if (i == 0)
{
for (int j = 0; j < xy[i]; j++) //例如xy[i]=3 则sub_array[i]=1*100+2*10+3*1
{
int temp = 1;
for (int cifang = xy[i] - j; cifang > 1; cifang--) // cifang意为 次方
{
temp = temp * 10;
}
sub_array[i] = sub_array[i] + array[j] * temp;
}
}
else if (i > 0 && i < n)
{
for (int j = xy[i - 1]; j < xy[i]; j++)
{
int temp = 1;
for (int cifang = xy[i] - j; cifang > 1; cifang--)
{
temp = temp * 10;
}
sub_array[i] = sub_array[i] + array[j] * temp;
}
}
else
{
for (int j = xy[i - 1]; j < array.length; j++)
{
int temp = 1;
for (int cifang = array.length - j; cifang > 1; cifang--)
{
temp = temp * 10;
}
sub_array[i] = sub_array[i] + array[j] * temp;
}
}
}
jiSuan_jieguo(n, oi, sub_array, xy); //计算结果
}
/
public static void fuhao_oi_(int[] array, int n, int[] xy, int[] oi, int i) //第三个递归 用来确定加减号
{
if (i == n)
{
jiSuan_even(array, n, xy, oi);
return;
}
for (int k = 0; k <= 1; k++) //二叉树 0为加 1为减
{
oi[i] = k;
fuhao_oi_(array, n, xy, oi, i + 1);
}
}
public static void fuhaoxy(int[] array, int n, int[] xy, int index)//第二个递归 确定符号位置
{
if (index == n)
{
if (n == 1 && xy[index - 1] > 8) { return; }
for (int j = n - 1; j >= 1; j--) //符号位置不能重合 不要出现重复
{
if (xy[j] - xy[j - 1] <= 0) { return; }
}
int[] oi = new int[n]; //oi数组 保存符号
fuhao_oi_(array, n, xy, oi, 0);
return;
}
for (int i = 1; i <= 8; i++)
{
xy[index] = i;
fuhaoxy(array, n, xy, index + 1);
}
}
public static void fuhaosum(int[] array, int n)//第一个递归 确定符号的个数。
{
if (n > 8)
{
return;
}
int[] xy = new int[n];
for (int i = 1; i <= n; i++)
{
xy[i - 1] = i;
fuhaoxy(array, n, xy, 0);
}
fuhaosum(array, n + 1);
}
public static void main(String[] args)
{
int[] array = new int[9];
for (int i = 1; i <= 9; i++)
{
array[i - 1] = i;
}
fuhaosum(array, 1);
}
}
运行结果如下:
123-45-67+89=100
123-45-67+89=100
123-45-67+89=100
123+4-5+67-89=100
123+45-67+8-9=100
123+4-5+67-89=100
123+45-67+8-9=100
123+4-5+67-89=100
123+45-67+8-9=100
123+4-5+67-89=100
123+45-67+8-9=100
1+2+34-5+67-8+9=100
1+23-4+5+6+78-9=100
1+23-4+56+7+8+9=100
12+3+4+5-6-7+89=100
12-3-4+5-6+7+89=100
12+3-4+5+67+8+9=100
123-4-5-6-7+8-9=100
1+2+34-5+67-8+9=100
1+23-4+5+6+78-9=100
1+23-4+56+7+8+9=100
12+3+4+5-6-7+89=100
12-3-4+5-6+7+89=100
12+3-4+5+67+8+9=100
123-4-5-6-7+8-9=100
1+2+34-5+67-8+9=100
1+23-4+5+6+78-9=100
1+23-4+56+7+8+9=100
12+3+4+5-6-7+89=100
12-3-4+5-6+7+89=100
12+3-4+5+67+8+9=100
123-4-5-6-7+8-9=100
1+2+34-5+67-8+9=100
1+23-4+5+6+78-9=100
1+23-4+56+7+8+9=100
12+3+4+5-6-7+89=100
12-3-4+5-6+7+89=100
12+3-4+5+67+8+9=100
123-4-5-6-7+8-9=100
1+2+34-5+67-8+9=100
1+23-4+5+6+78-9=100
1+23-4+56+7+8+9=100
12+3+4+5-6-7+89=100
12-3-4+5-6+7+89=100
12+3-4+5+67+8+9=100
123-4-5-6-7+8-9=100
1+2+34-5+67-8+9=100
1+23-4+5+6+78-9=100
1+23-4+56+7+8+9=100
12+3+4+5-6-7+89=100
12-3-4+5-6+7+89=100
12+3-4+5+67+8+9=100
123-4-5-6-7+8-9=100
1+2+3-4+5+6+78+9=100
1+2+3-4+5+6+78+9=100
1+2+3-4+5+6+78+9=100
1+2+3-4+5+6+78+9=100
1+2+3-4+5+6+78+9=100
1+2+3-4+5+6+78+9=100
1+2+3-4+5+6+78+9=100