这个教程默认代码、预训练模型、测试部分的代码已经下载好,环境也已经编译好
【训练】
- models
models文件夹下存放的是对应的预训练的模型在训练时的网络参数。
以ResNet-101为例:
注意:下面的cls_num指的是数据集的类别数+1(背景)。比如我想检测鱼这一个类别,cls_num=2.
(1)修改其中的solver_ohem.protoxt
train_net: "models/fish4knowledge/ResNet-101/rfcn_end2end/train_agnostic_ohem.prototxt"
base_lr: 0.001 #初始学习率
lr_policy: "step" #学习率更新的方式
gamma: 0.1 #学习率衰减的倍率
stepsize: 10000 #迭代一万次,学习率衰减为原来的0.1倍
display: 20 #每迭代20次在终端打印一次输出
momentum: 0.9 #动量
weight_decay: 0.0005 #权重衰减率
# We disable standard caffe solver snapshotting and implement our own snapshot
# function
snapshot: 0 #选择迭代多少次保存一次中间模型
# We still use the snapshot prefix, though
snapshot_prefix: "resnet101_rfcn_ohem"
iter_size: 2 #由于是做检测任务,batch_size值较小
#debug_info: true
根据以上代码的第一行我们知道接下来要修改train_agnostic_ohem.prototxt 这里着重讲一下,训练可以选择两种方式,一种带ohem,一种不带ohem;我在训练时用的是前者,所以修改的都是文件名里有ohem的
(2)修改train_agnostic_ohem.prototxt
** 两处数据层、两处卷积层、 对应的两处cls和bbox参数层(大家会发现每个prototxt修改的内容大致相同)
以后需要调整anchor大小来做不同的实验时,也是在这个文件里改,详情见下篇博客。
layer {
name: 'input-data'
type: 'Python'
top: 'data'
top: 'im_info'
top: 'gt_boxes'
python_param {
module: 'roi_data_layer.layer'
layer: 'RoIDataLayer'
param_str: "'num_classes': 2" #cls_num
}
}
layer {
name: 'roi-data'
type: 'Python'
bottom: 'rpn_rois'
bottom: 'gt_boxes'
top: 'rois'
top: 'labels'
top: 'bbox_targets'
top: 'bbox_inside_weights'
top: 'bbox_outside_weights'
python_param {
module: 'rpn.proposal_target_layer'