用自己的数据集在R-FCN框架下进行检测

这个教程默认代码、预训练模型、测试部分的代码已经下载好,环境也已经编译好

【训练】

  • models
    models文件夹下存放的是对应的预训练的模型在训练时的网络参数。
    以ResNet-101为例:
    注意:下面的cls_num指的是数据集的类别数+1(背景)。比如我想检测鱼这一个类别,cls_num=2.
    (1)修改其中的solver_ohem.protoxt
train_net: "models/fish4knowledge/ResNet-101/rfcn_end2end/train_agnostic_ohem.prototxt"
base_lr: 0.001    #初始学习率
lr_policy: "step"    #学习率更新的方式
gamma: 0.1           #学习率衰减的倍率
stepsize: 10000      #迭代一万次,学习率衰减为原来的0.1倍
display: 20    #每迭代20次在终端打印一次输出

momentum: 0.9     #动量
weight_decay: 0.0005      #权重衰减率
# We disable standard caffe solver snapshotting and implement our own snapshot
# function
snapshot: 0  #选择迭代多少次保存一次中间模型
# We still use the snapshot prefix, though
snapshot_prefix: "resnet101_rfcn_ohem"
iter_size: 2   #由于是做检测任务,batch_size值较小
#debug_info: true

根据以上代码的第一行我们知道接下来要修改train_agnostic_ohem.prototxt 这里着重讲一下,训练可以选择两种方式,一种带ohem,一种不带ohem;我在训练时用的是前者,所以修改的都是文件名里有ohem的

(2)修改train_agnostic_ohem.prototxt
** 两处数据层、两处卷积层、 对应的两处cls和bbox参数层(大家会发现每个prototxt修改的内容大致相同)
以后需要调整anchor大小来做不同的实验时,也是在这个文件里改,详情见下篇博客。

layer {
  name: 'input-data'
  type: 'Python'
  top: 'data'
  top: 'im_info'
  top: 'gt_boxes'
  python_param {
    module: 'roi_data_layer.layer'
    layer: 'RoIDataLayer'
    param_str: "'num_classes': 2" #cls_num
  }
}
layer {
  name: 'roi-data'
  type: 'Python'
  bottom: 'rpn_rois'
  bottom: 'gt_boxes'
  top: 'rois'
  top: 'labels'
  top: 'bbox_targets'
  top: 'bbox_inside_weights'
  top: 'bbox_outside_weights'
  python_param {
    module: 'rpn.proposal_target_layer'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值