矩形覆盖

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

IDEA

这种题就是找规律,找通式,用递归计算。

f(1)=1; f(2)=2;

f(3)在f(2)基础上加,可初步确定f(n)=f(n-1)+f';

多计算n=4,5..情况推出f(n)=f(n-1)+f(n-2)

换一种思路:

若第一次摆放的2*1的矩形,还剩n-1块,共f(n-1)中方法;

若第一次摆放的1*2的矩形,那么第二块的摆放方法也确定了,是1*2,则还剩n-2块,共f(n-2)中方法;

所以f(n)=f(n-1)+f(n-2)

CODE

public class Solution {
    public int RectCover(int target) {
		if (target < 1) {
            return 0;
        } else if (target == 1 || target == 2) {
            return target;
        } else {
            return RectCover(target-1) + RectCover(target-2);
        }
    }
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值