论文阅读
__main__
这个作者很懒,什么都没留下…
展开
-
VSE++: Improving Visual-Semantic Embeddings with Hard Negatives
一、前言1.论文要解决的问题:输入: MSCOCO,Flickr30K输出: image to text (text to image):rank2, 本文的方法创新:提出了一种新的计算loss的方案,主要针对与hard negtive,加大样本与hard negtive 的距离二、论文方法Embedding1) 图像采用VGG19或者ResNet152进行特征提取2) 文本描...原创 2019-11-17 09:43:15 · 3695 阅读 · 0 评论 -
论文阅读笔记:Adversarial Cross-Modal Retrivieval
提问要解决什么问题: 现有的基于DNN的跨模态检索仅仅关注于保持配对的跨模态数据集的成对相似性,这些数据共享语义标签并且在模型学习的过程中充当输入,然而一个模态的一项数据可能存在语义不同的数据项,所以仅仅关注成对项是远远不够的用什么方法解决? 提出了一种基于对抗训练的跨模态搜索ACMR( Adversarial Cross-Modal Retriviel), Adversari...原创 2019-07-07 17:21:34 · 2146 阅读 · 4 评论 -
一、、笔记:A Comprehensive Survey on Cross-modal Retrieval
A Comprehensive Survey on Cross-modal Retrieval1、Introduction什么是跨模态检索(cross-modal retrieval)?通常不同的数据模式会用来描述相同的主题或者事件,例如,一个网页不仅包含文字叙述,还包含用于说明共同内容的图像或者视频,这种类型的数据称为多模态数据(multi-moddal data),其具有异构性(het...原创 2019-07-07 18:38:28 · 917 阅读 · 0 评论 -
论文阅读笔记:On the Role of Correlation and Abstraction in Cross-Modal Multimedia Retrieval
ps:这篇文章和A New Approach to Cross-Modal Multimedia Retrieval 是同一个组针对同类问题写的,就一起看了0、Pre-work提出了什么问题: 怎样解决: 达到的效果: 还存在的问题(或后期工作): ...原创 2019-07-14 20:27:33 · 649 阅读 · 1 评论