拟合-机器学习基础(三)

本文深入探讨机器学习中的拟合概念,从数据准备到模型训练,详述如何使用Python进行数据分类,并展示拟合结果,揭示算法如何适应和理解数据模式。
摘要由CSDN通过智能技术生成

前言

机器学习算法的本质大部分在于拟合数据。

数据准备

1.通过以下代码来加载包和要分类的平面数据

import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
from init_utils import sigmoid, relu, compute_loss, forward_propagation
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值