- 博客(4)
- 收藏
- 关注
原创 视觉SLAM/VIO开源代码解析课程学习总结笔记2
视觉SLAM/VIO开源代码解析课程学习总结笔记 CH1:ORB_SLAM2 第一节:基本框架与预备知识 知识点1:求解相机位姿篇(2) 1.2给定的匹配特征点是3D-2D时 EPNP法:通俗的理解就是在世界坐标系和相机坐标系之间建一个介质作用的坐标系,再把世界坐标系和相机坐标系的点都投影到这个介质坐标系,讲道理他们应该是重合的,但由于误差并不重合,那就求出最优的旋转,平移,缩放参数让这个误差尽量...
2023-02-15 17:56:13 108
原创 视觉SLAM/VIO开源代码解析课程学习总结笔记1
视觉SLAM/VIO开源代码解析课程学习总结笔记 CH1:ORB_SLAM2 第一节:基本框架与预备知识 知识点1:求解相机位姿篇(1) 通过已经有的匹配好的特征点求解旋转矩阵R,平移向量t,缩放因子s 1.1给定的匹配特征点是3D-3D时——ICP法 ICP法(Iterative Closest Point):以我的理解就是先建立匹配好的前后时刻的两团点的坐标系o-xyz(其中这个坐标系里的点团...
2023-02-15 17:53:54 195
原创 视觉SLAM/VIO开源代码解析课程学习总结笔记4
CH1:ORB_SLAM2 第一节:基本框架与预备知识 知识点1:知识点1:求解相机位姿篇(3) 通过已经有的匹配好的特征点求解旋转矩阵R,平移向量t,缩放因子s 1.3给定的匹配特征点是2D-2D时——Fundamental法/Homography法 1.3.1:方法二:Homography法 直观理解: 1.准备工作 在建立Homography模型之前,我们先来理解Homography这个词吧...
2023-02-15 17:53:28 151
原创 视觉SLAM/VIO开源代码解析课程学习总结笔记3
CH1:ORB_SLAM2 第一节:基本框架与预备知识 知识点1: 通过已经有的匹配好的特征点求解旋转矩阵R,平移向量t,缩放因子s 1.3给定的匹配特征点是2D-2D时——Fundamental法/Homography法 1.3.1:方法一:Fundamental法 直观理解:就是通过(两个相机坐标之间的旋转平移关系+相片上面匹配好的特征点与所对应的实体3D点形成的共平面关系)推算出一个几何约束...
2020-01-15 10:51:50 1391
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人