机器学习
文章平均质量分 61
shaomingshan_
这个作者很懒,什么都没留下…
展开
-
机器学习:极大似然估计
模式分类课后题 上机题3.2考虑不同维度下的高斯概率密度模型。a.编写程序,对表格中的类w1中的3个特征xi,分别求解最大似然估计均值μ ̂和方差σ ̂^2。b.修改程序,处理二维数据的情形p(x)~N(μ,Σ)。然后处理对表格中的类w1中的任意两个特征的组合(共三种可能)。c.修改程序,处理三维数据的情形p(x)~N(μ,Σ)。然后处理对表格中的类w1中3个特征的组合。d.假设这个三维高斯模型是可分离的,即Σ=diag(σ_1^2,σ_2^2,σ_3^2),写一个程序估计类别w2中的均值和协方差原创 2018-05-05 11:29:29 · 1156 阅读 · 1 评论 -
机器学习:贝叶斯决策论
模式分类课后题 2.5节 第2题根据表格中的样本进行分类,样本服从正态分布a. 假设前面两个类别的先验概率相等P(w1)=P(w2)=1/2,且P(w3)=0;仅利用x特征值为这两类判别设计一个分类器b.确定样本的经验训练误差,即误分点的百分比c.利用Bhattacharyya界定对该分布所产生的新模式进行分类会产生的误差d.现在利用两个特征值x1和x2,重复以上各步骤e.利用所有3个特征值重复以上各步f.讨论所得的结论,特别是对于一个有限的数据集,是否可能在更高的数据维数下经验误差会增加。原创 2018-04-29 12:02:41 · 1249 阅读 · 0 评论 -
机器学习:Parzen窗、k-nn
模式分类课后题 4.3 4.41、考虑对于表格中的数据进行Parzen窗估计和设计分类器。窗函数为一个球形的高斯函数,如下所示:(a)编写程序,使用Parzen窗估计方法对一个任意的测试样本点x进行分类。对分类器的训练则使用表格中的三维数据。同时令h=1,分类样本点为,,。(b)现在我们令h=0.1,重复(a)。2、考虑不同维数的空间中,使用k-近邻概率密度估计方法的效果。(a)编写程序,对于一维的情况,当有个数据样本点时,进行k-近邻概率密度估计。对表格中的类别中的特征,用程序画出当k=1,3原创 2018-07-27 16:21:55 · 8442 阅读 · 9 评论 -
机器学习:梯度下降和牛顿法
一、问题描述考虑将基本梯度下降和牛顿法应用到表中的数据上。(a)用这两种算法对二维数据给出 和 的判别。对梯度下降法取 。画出以迭代次数为准则函数的曲线。(b)估计这两种方法的数学运算量。(c)画出收敛时间-学习率曲线。求出无法收敛的最小学习率。二、算法核心思想分析1、线性判别函数由 的各个分量的线性组合而成的函数:这里 是“权向量”, 被称为“阈值权”。对...原创 2018-07-27 21:13:58 · 1764 阅读 · 0 评论 -
机器学习:基于MNIST的BP神经网络
一、问题描述设计神经网络,利用反向传播算法,基于MNIST数据集做手写识别,并在神经元个数或隐含层个数上进行改变,探究其性能差别。二、算法核心思想分析利用sigmoid神经元构建神经网络,使用前馈神经网络实现mini-batch随机梯度下降学习算法,使用反向传播计算梯度,更新权重(weights)和偏置(biases)。利用均值为0方差为1的高斯分布随机初始化网络。三、题目分析...原创 2018-07-27 21:56:44 · 5537 阅读 · 3 评论 -
机器学习:集成学习
一、问题描述利用SVM、KNN、bp神经网络等算法进行集成学习,基于MNIST数据集进行手写识别的训练和测试。二、算法核心思想分析集成学习是将几个弱分类器结合起来,得到更好的分类结果。使用SVM、KNN和bp神经网络分别训练,将分类结果进行投票,得出最后集成分类器的结果。三、题目分析首先读取MNIST数据集,分别对分类器进行训练,测试时,将三个分类器的结果进行投票,最终得出的结...原创 2018-07-27 22:08:56 · 1966 阅读 · 0 评论