- 博客(5)
- 资源 (1)
- 收藏
- 关注
原创 Datawhale 零基础入门CV赛事-Task5 模型集成
之前了解了如何构建验证集,如何训练和验证。本章作为本次赛题学习的最后一章,将会讲解如何使用集成学习提高预测精度。5 模型集成本章讲解的知识点包括:集成学习方法、深度学习中的集成学习和结果后处理思路。5.1 学习目标学习集成学习方法以及交叉验证情况下的模型集成 学会使用深度学习模型的集成学习5.2 集成学习方法在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stacking、Bagging和Boosting,同时这些集成学习方法与具体验证集划分联系紧密。由于
2020-06-02 11:10:28 120
原创 Datawhale 零基础入门CV赛事-Task4-模型训练与验证
本次的学习目标则与以下两点:理解验证集的作用,并使用训练集和验证集完成训练 学会使用pytorch环境下的模型读取和加载,并理解调参的流程样本集训练集(Train Set):模型用于训练和调整模型参数测试集(Test Set):验证模型的泛化能力验证集(Validation Set):用来验证模型精度和调整模型超参数验证集划分方法留出法(Hold-Out)直接将训练集划分成两部分,新的训练集和验证集。优点:简单缺点:有可能导致模型在验证集上过拟合应用:数据量比较大的情况
2020-05-29 16:08:54 220
原创 Datawhale 零基础入门CV赛事-Task3 字符识别模型
本文讲解卷积神经网络(Convolutional Neural Network, CNN)的常见层,并从头搭建一个字符识别模型。CNN网络卷积神经网络(简称CNN)是一类特殊的人工神经网络,是深度学习中重要的一个分支。CNN在很多领域都表现优异,精度和速度比传统计算学习算法高很多。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。CNN每一层由众多的卷积核组成,每个卷积核对输入的像素进行卷积操作,得到下一次的输入。随着网络层的增加卷积核会逐渐扩大感受野,并缩减图
2020-05-26 20:19:17 177
原创 Datawhale 零基础入门CV赛事-Task2 数据读取与数据扩增
赛题名称:零基础入门CV赛事-街道字符识别(天池)赛题地址:https://tianchi.aliyun.com/competition/entrance/531795/introduction赛题任务:以计算机视觉中字符识别为背景,要求预测街道字符编码。赛题数据采用公开数据集SVHN,可以参考不定长字符识别的思路(crnn)。第二阶段任务:数据读取与数据扩增1. 目的实现图片的数据读取与数据扩增和Pytorch读取赛题数据2. 学习目标学习Python中Pillow、OpenCV中.
2020-05-23 15:27:05 245
原创 Datawhale 零基础入门CV赛事-Task1 赛题理解
赛题名称:零基础入门CV赛事-街道字符识别(天池)赛题地址:https://tianchi.aliyun.com/competition/entrance/531795/introduction赛题任务:以计算机视觉中字符识别为背景,要求预测街道字符编码。赛题数据采用公开数据集SVHN,可以参考不定长字符识别的思路(crnn)。数据的简单说明:该数据来自收集的SVHN街道字符,并进行了匿名采样处理。训练集数据包括3W张照片,验证集数据包括1W张照片,每张照片包括颜色图像和对应的编码类别和具体位置;
2020-05-20 12:47:54 172
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人